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Abstract
Infection with the cytomegalovirus (CMV) is common. Inflammatory bowel disease (IBD) is characterized by chronic 
inflammation in the gastrointestinal tract. CMV infection is involved in IBD pathogenesis. The abnormal activation of 
myeloid differentiation factor 88 (MyD88)/nuclear factor- kappa B (NF-κB) signaling, which results in inflammatory 
cytokine overexpression, is an important factor in IBD pathogenesis. The present study aimed to examine the effect 
of CMV infection on NF-κB activation and its role in IBD pathogenesis. Since BALB/c rather than C57BL/6 mice 
belong to the murine CMV (MCMV) susceptible strain, allogeneic skin transplantation was conducted between 
MyD88 (+/+) or MyD88-knockout Myd88 (−/−) BALB/c (recipient) mice and C57BL/6 (donor) mice. Thereafter, the 
immune function of the recipient mice was reduced by immunosuppressant cyclosporine, which is meaningful 
in the pathogenesis of IBD caused by MCMV in immunocompromised mice. MCMV strain K181-eGFP (eGFP K181) 
or hMIEP-eGFP K181 (knockout MCMV IE1-3 promoter) was used to infect MyD88 (+/+) BALB/c mice while eGFP 
K181 was also used to infect MyD88 (−/−) BALB/c mice on day 14 post allogeneic skin transplantation. MCMV DNA 
was detected via nested polymerase chain reaction. Hematoxylin–Eosin staining was used to assess colon necrosis 
and inflammatory cell infiltration. The serum levels of tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-8, IL-12, 
flagellin, lipopolysaccharide, and myeloperoxidase were detected by ELISA and immune reaction. Immunoblots 
were applied to measure protein levels. eGFP K181 infection significantly induced colon permeability, necrosis, 
inflammatory cell infiltration, and inflammation in allogeneic skin transplantation mice. hMIEP-eGFP K181 infection 
significantly inhibited colon permeability, necrosis, inflammatory cell infiltration, and inflammation compared with 
eGFP K181 infection in allogeneic skin transplantation mice. Moreover, the MyD88-dependent NF-κB signaling 
pathway was involved in the pathogenesis of eGFP K181-induced colon permeability and inflammation in 
allogeneic skin transplantation mice. Our findings highlight the importance of CMV infection and the Myd88/NF-κB 
signaling pathway in IBD and might provide a new direction for the development of drugs for IBD.
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Introduction
Inflammatory bowel disease (IBD) is an inflammatory 
disease of the gastrointestinal tract [1]. IBD is divided 
into either ulcerative colitis or Crohn’s disease [2]. Its 
symptoms include abdominal pain, diarrhea, and rectal 
bleeding, while its causes may include genetic predisposi-
tion, gut microbiome alterations, immune defects, etc [3]. 
Hitherto, IBD has been considered a disease of people in 
developed countries; however, studies have shown a rapid 
rise in its prevalence in newly industrialized countries [4]. 
Human cytomegalovirus (HCMV) is an enveloped, dou-
ble-stranded DNA virus. According to the International 
Committee on the Taxonomy of Viruses criteria for virus 
classification, HCMV belongs to the family Orthoherpes-
viridae, subfamily Betaherpesvirinae, and genus Cyto-
megalovirus [5]. Cytomegalovirus (CMV) persists among 
infected individuals in a latent asymptomatic state across 
its host’s lifetime [6]. It reactivates when the infected host 
develops an immunosuppressed state which is followed 
by various breakthrough presentations of CMV-related 
diseases. CMV, thanks to its extensive tissue affinity, can 
infect various types of cells [7]. CMV has been detected 
in the gastrointestinal tract of patients with esophagitis 
[8] and is associated with IBD [9, 10]. It has been shown 
that CMV counts in intestinal biopsy specimens were 
significantly higher in patients with IBD than in controls 
[11]. Another study also showed a significant difference 
in steroid resistance between IBD patients with/without 
CMV infection [7].

Nuclear factor-kappa B (NF-κB) regulates various 
genes involved in immune and inflammatory responses 
[12]. This family is composed of five structurally related 
members—NF-κB1 (p50), NF-κB2 (p52), RelA (p65), 
RelB, and c-Rel [13]. The most prevalent activated form is 
a heterodimer consisting of p50 and p65 [14]. Abnormal 
NF-κB activation results in the elevation of tumor necro-
sis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-8, 
and IL-12 levels, contributing to IBD pathogenesis [15]. 
Treatment with the anti-TNF-α antibody has been suc-
cessful for patients with IBD [16]. CMV infection has also 
been shown to increase levels of the inhibitor of κB (IκB) 
kinase (IKK) proteins and decrease IκB levels, culmi-
nating in prolonged NF-κB activation [17]. CMV major 
immediate-early protein IE has multiple functions, and 
it is important for efficient viral infection [18]. IE tran-
scription is controlled by the major immediate-early pro-
moter/enhancer (MIEP) [19], which is transactivated by 
NF-κB [17], indicating a positive feedback loop of CMV 
infection and NF-κB activation. However, the role of 

CMV infection in NF-κB activation and IBD remains to 
be elucidated.

Murine CMV (MCMV) infection resembles HCMV, 
and this resemblance is a useful tool for exploring early 
immune response after contracting CMV infection 
[20]. Since BALB/c rather than C57BL/6 mice belong 
to the MCMV-susceptible strain [21], skin grafting was 
conducted between BALB/c (recipient) and C57BL/6 
(donor) mice. After BALB/c mice received allogeneic skin 
transplantation, their immune function was reduced by 
immunosuppressants such as cyclosporine (CsA) [22], 
which will be meaningful in exploring the pathogenesis 
of IBD caused by MCMV in immunocompromised mice. 
Our current study was designed to investigate the com-
bined effects on NF-κB activation and IBD associated 
with organ transplantation and CsA-mediated immune 
suppression. We aimed to establish a mouse model of 
MCMV-associated IBD using mice that are recipients of 
allogeneic skin transplants.

Materials and methods
Murine cytomegalovirus
MCMV strains K181-eGFP (eGFP K181) and hMIEP-
eGFP K181 (Knock out MCMV IE1-3 promoter 
(sequences up to -146 nucleotides (nt) upstream from 
the IE1-3 cap site) were generously donated by Dr. Red-
wood from University of Western Australia, and they 
were passaged and preserved by Dr. Gan from Anhui 
Medical University. MCMV was routinely propagated 
in mouse embryo fibroblasts, maintained in minimum 
essential medium (MEM; Gibco, Invitrogen Corporation, 
CA, USA) containing 10% fetal bovine serum (Invitrogen 
Corporation, Invitrogen Shanghai Office, China), 100 U/
mL penicillin, and 10 µg/mL streptomycin, and its titra-
tion was determined as previously described [22].

Mice
All the experimental protocols were approved by the 
Laboratory Animal Ethics Committee of the Zhejiang 
Academy of Traditional Chinese Medicine [no. (2021) 
016]. BALB/c (n = 138, female, aged 4–6 weeks), C57BL/6 
(n = 42, female, aged 4–6 weeks), and myeloid differentia-
tion factor 88 (MyD88)-knockout Myd88 (−/−) BALB/c 
mice (n = 30, female, aged 4–6 weeks) were obtained from 
the Cyagen (Shanghai, China).

Skin transplantation models
Transplantations were conducted between MyD88(+/+) 
or MyD88(−/−) BALB/c female (recipient) and C57BL/6 
female (donor) mice (aged 4–6 weeks) as previously 
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described [22]. A square graft (1 cm × 1 cm) was placed 
on a graft bed prepared on the back of the recipient 
mouse. The transplantation area was covered with Vase-
line gauze and the bandage was removed on day 8 post-
transplantation. After surgery, mice received 12  mg/
kg CsA (MedChemExpress LLC, Shanghai, China; 
HY-B0579) daily via intraperitoneal injection throughout 
the study. For Experiment 1, 80 µL of MEM containing 
1 × 105 PFU eGFP K181 or 80 µL of MEM as a control was 
inoculated intranasally into MyD88(+/+) BALB/c mice 
on day 14 post allogeneic skin transplantation (n = 30 
per group). For Experiment 2, 80 µL of MEM containing 
1 × 105 PFU eGFP K181 or hMIEP-eGFP K181 were inoc-
ulated intranasally into MyD88(+/+) BALB/c mice on day 
14 post allogeneic skin transplantation (n = 24 per group). 
For Experiment 3, 80 µL of MEM containing 1 × 105 PFU 
eGFP K181 was inoculated intranasally into MyD88(+/+) 
or MyD88(−/−) BALB/c mice on day 14 post allogeneic 
skin transplantation (n = 30 per group). The mice were 
sacrificed 5, 9, 14, 21, or 28 d postinfection, and serum 
and colon tissue samples were collected.

Immunofluorescence
MCMV eGFP K181 or hMIEP-eGFP K181 infection in 
colon tissues of allogeneic skin transplantation mice was 
confirmed by immunofluorescence at 5, 9, 14, or 21 d 
postinfection. Colon tissues were dehydrated, paraffin-
embedded, sectioned at 4  μm of thickness, and placed 
into microscope slides. Images were taken with a micro-
scope (Nikon Eclipse C1, Tokyo, Japan).

Polymerase chain reaction (PCR) assessment of viral levels
MCMV DNA levels in colon tissues of allogeneic skin 
transplantation mice were detected at 5, 9, 14, or 21 d 
postinfection by real-time quantitative polymerase chain 
reaction (PCR) [23, 24]. Organ DNA was prepared by 
using a QIAamp tissue kit (Qiagen, Chatsworth, CA, 
USA). Real-time quantitative PCR was performed using 
the Taqman Gene Expression Master Mix and ABI 7500 
Fast System. Primers were based on the MCMV IE1 gene 
sequence as follows: forward primer, 5′- T G C C A T A C T G 
C C A G C T G A G A-3′; reverse primer, 5′- G G C T T C A T G A 
T C C A C C C T G T T-3′; probe 5′- C T G G C A T C C A G G A A A 
G G C T T G G T G-3′ labeled with the 6-carboxyfluorescein 
reporter dye and the 6-carboxytetramethylrhodamine 
quencher dye [23]. The target DNA copy number in each 
sample was calculated based on the standard curve gen-
erated in each individual assay [24].

Hematoxylin–Eosin staining
The colon tissue of allogeneic skin transplantation mice 
was separated at 5, 9, 14, or 21 d postinfection and pre-
served as paraffin blocks. Briefly, the tissue sections were 
coated with hematoxylin for 5 min and then washed with 

water. Then, the sections were covered with 1% acid etha-
nol regent for 5 s and washed with water. Next, the blue-
promoting solution was added to the sections for 5 s and 
washed with water. Eosin solution was added for 10 min 
and then the sections were dehydrated with graded alco-
hol and cleared in xylene. The image was observed under 
a microscope.

Measuring the epithelial barrier permeability in mice
The barrier permeability in allogeneic skin transplanta-
tion mice was measured at 5, 9, 14, or 21 d postinfection 
as previously described [25]. After 3 h of starvation, each 
mouse was intragastrically administered 150 µL fluo-
rescein isothiocyanate (FITC)-dextran (4  kDa, 80  mg/
ml; Sigma-Aldrich, Bornem, Belgium; FD500). Blood 
was collected from the tail vein after 3  h, and serum 
was extracted. The fluorescence intensity of each serum 
sample was measured, and FITC-dextran concentrations 
were obtained from standard curves generated by serial 
dilution of FITC-dextran.

Enzyme-linked immunosorbent assay (ELISA)
The levels of TNF-α (E-EL-M3063; Elabscience), IL-1β 
(E-EL-M0037; Elabscience), IL-6 (E-EL-M0044; Elab-
science), IL-8 (SEKM-0046; Beijing Solarbio Science & 
Technology Co., Ltd), and IL-12 (E-EL-M3062; Elab-
science) in serum and that of myeloperoxidase (MPO; 
ab285307; Abcam) in colon tissues of allogeneic skin 
transplantation mice was measured at 5, 9, 14, 21, or 28 d 
postinfection using commercial ELISA kits and a micro-
plate reader as previously described [26].

Immunoassays
To measure product-specific antibodies, microtiter plates 
were coated with flagellin (Sigma-Aldrich, St. Louis, 
MO, USA; SRP8029; 100 ng/well) or lipopolysaccharide 
(LPS; Sigma-Aldrich; 297-473-0; 1 µg/well) applied over-
night in 0.1 M NaHCO3 (pH 9.6). After overnight coat-
ing, serum isolated from allogeneic skin transplantation 
mice at 28 d postinfection was diluted 1/100 in ELISA 
wash buffer (HBSS with 0.5% goat serum and 0.1% Tween 
20) and applied to coated plates. After 1  h of incuba-
tion, product-specific IgG was detected using Goat Anti-
Mouse IgG (Abcam, Waltham, MA, USA; ab214879). 
Peroxidase was then revealed via 3,3′,5,5′-tetramethyl-
benzidine substrate (Sigma-Aldrich; T8665), and follow-
ing treatment with H2SO4, OD was read at 450 nm [27].

Western blot
Protein was extracted from colon tissues of allogeneic 
skin transplantation mice at 5, 9, 14, or 21 d postinfec-
tion using the radioimmunoprecipitation assay lysis 
buffer with freshly added protease inhibitor cock-
tail (Sigma-Aldrich), separated by sodium dodecyl 



Page 4 of 15Chen et al. Virology Journal          (2025) 22:101 

Fig. 1 (See legend on next page.)
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sulfate-polyacrylamide gel electrophoresis, immunoblot-
ted to a polyvinylidene fluoride membrane, blocked, and 
probed with antibodies against MCMV IE1 (KA&M-BIO, 
Shanghai, China; QM0866R), IKKα (Abcam; ab32041), 
IKKβ (Abcam; ab32135), p65 (Abcam; ab16502), p52 
(Abcam; ab264236), Toll-IL-1 receptor-resistance pro-
tein domain-containing adapter-inducing interferon-beta 
(TRIF; Invitrogen; PA1-20824), MyD88 (Abcam; ab2064), 
tumor necrosis factor receptor-associated factor 6 
(TRAF6; Abcam; ab40675), transforming growth factor-
beta activated kinase 1 (TAK1; Abcam; ab109526), and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 
Proteintech Group, Inc., Rosemont, IL, USA; 60004-1-
1G), followed by a secondary antibody. Signals were visu-
alized with ECL.

Data analysis
Three independent replicates were performed for 
all assays. Quantitative data were expressed as the 
mean ± standard derivation (SD). Comparisons between 
quantitative data were performed by Student’s t-test 
(two groups) or the analysis of variance (more than two 
groups) using Prism8.4.2 (GraphPad, La Jolla, CA, USA). 
P < 0.05 was considered statistically significant.

Results
eGFP K181 infection increased colon permeability and 
promoted necrosis and inflammatory cell infiltration in 
allogeneic skin transplantation mice
To study how MCMV infection affects colon barrier 
permeability, transplantation was performed between 
BALB/c (recipient) and C57BL/6 (donor) mice, 80 µL of 
MEM containing 1 × 105 PFU eGFP K181 was inoculated 
intranasally into allogeneic skin transplantation mice and 
serum and colon tissue samples were collected at 5 d, 9 
d, 14 d, 21 d, or 28 d postinfection (Fig. 1A). eGFP K181 
infection in colon tissues, which was confirmed by immu-
nofluorescence with positive eGFP (Fig. 1B), induced an 
increase in MCMV DNA copy numbers (Fig. 1C) and the 
upregulation of MCMV IE1 in colon tissues at 5, 9, 14, 
or 21 d postinfection (Fig. 1D). eGFP K181 infection also 
caused decreased body weight (Fig. 1E), enhanced colon 
barrier permeability (Fig. 1F), and increased necrosis and 
inflammatory cell infiltration in colon tissues at 5, 9, 14, 
or 21 d postinfection (Fig. 1G). Together, these data sug-
gest that MCMV infection increased colon permeability 

and promoted necrosis and inflammatory cell infiltration 
in mice following skin transplantation.

eGFP K181 infection activated the MyD88/NF-κB signaling 
pathway in allogeneic skin transplantation mice
To study how MCMV infection increased colon perme-
ability and promoted necrosis and inflammatory cell 
infiltration in allogeneic skin transplantation mice, we 
further checked the serum inflammatory cytokine levels. 
ELISA results showed that eGFP K181 infection time-
dependently increased the serum levels of these cyto-
kines (Fig. 2A and E). Western blotting results indicated 
that eGFP K181 infection time-dependently increased 
the expression levels of some important factors involved 
in the MyD88/NF-κB signaling pathway, including 
MyD88, TRIF, TRAF6, TAK1, IKKα, IKKβ, p65, and p52 
in colon tissues (Fig.  2F). The toll-like receptor (TLR)/
MyD88/NF-κB pathway plays an important role in the 
pathogenesis of IBD [28, 29] and thus the levels of TLR 
ligands—LPS and flagellin—were also measured for the 
study of MCMV infection-induced changes in inflamma-
tion-related intestinal pathologies. Our data showed that 
eGFP K181 infection significantly increased the serum 
levels of anti-flagellin IgG, anti-LPS IgG, and MPO (a 
marker of leukocyte infiltration), in colon tissues at 28 d 
postinfection (Fig. 2G). These data indicate that MCMV 
infection activated the NF-κB signaling pathway in allo-
geneic skin transplantation mice.

hMIEP-eGFP K181 infection inhibited colon permeability, 
necrosis, and inflammatory cell infiltration in allogeneic 
skin transplantation mice
The CMV IE1 and IE2 proteinscan activate NF-κB-
dependent transcription [30, 31]. Moreover, IE3 gene 
products are required to activate early-stage gene expres-
sion of MCMV [32]. Therefore, we want to elucidate the 
role of MCMV IE1-3 in colon permeability and inflam-
mation in allogeneic skin transplantation mice. Trans-
plantation was performed as mentioned above, and 80 
µL of MEM containing 1 × 105 PFU hMIEP-eGFP K181 
(Knock out MCMV IE1-3 promoter) or eGFP K181 was 
inoculated intranasally into allogeneic skin transplanta-
tion mice and the serum and colon tissue samples were 
collected at 5, 9, 14, or 21 d postinfection (Fig.  3A). 
MCMV infection in colon tissues was confirmed by 
immunofluorescence at 5, 9, 14, or 21 d postinfection 
(Fig. 3B). hMIEP-eGFP K181 infection inhibited MCMV 

(See figure on previous page.)
Fig. 1 Effect of eGFP K181 infection on colon barrier permeability in allogeneic skin transplantation mice. 1 × 105 PFU eGFP K181 were inoculated intra-
nasally into allogeneic skin transplantation BALB/c mice on day 14 posttransplantation. (A) A schematic representation of the assay indicating time points 
of transplantation and eGFP K181 infection. (B) MCMV infection in colon tissues was confirmed by immunofluorescence with positive eGFP (Scale bar: 
50 μm); (C) MCMV DNA and (D) IE1 levels in colon tissues were measured by PCR and Western blot, respectively; (E) Body weight and (F) colon barrier 
permeability were measured; (G) Necrosis (blue arrow) and inflammatory cell infiltration (red arrow) of colon tissues at 5, 9, 14, or 21 d postinfection (Scale 
bar: 100 μm). Data are shown as the mean ± SD of six mice per group. *** P < 0.001 vs. control
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DNA copy numbers (Fig.  3C) and MCMV IE1 expres-
sion in colon tissues compared with eGFP K181 infection 
(Fig.  3D). hMIEP-eGFP K181 infection also increased 
body weight and inhibited colon barrier permeability, 
necrosis, and inflammatory cell infiltration compared 
with eGFP K181 infection (Fig. 3E and G).

hMIEP-eGFP K181 infection inhibited the NF-κB signaling 
pathway in allogeneic skin transplantation mice
Next, we checked the effect of hMIEP-eGFP K181 infec-
tion on the NF-κB signaling pathway in allogeneic skin 
transplantation mice. hMIEP-eGFP K181 infection sup-
pressed inflammatory cytokine levels compared with 
eGFP K181 infection (Fig.  4A and E). Western blot-
ting results indicated that hMIEP-eGFP K181 infection 

Fig. 2 Effect of eGFP K181 infection on the NF-κB signaling pathway in allogeneic skin transplantation mice. 1 × 105 PFU eGFP K181 were inoculated 
intranasally into allogeneic skin transplantation BALB/c mice on day 14 posttransplantation. The serum levels of (A) TNF-α, (B) IL-1β, (C) IL-6, (D) IL-8, and 
(E) IL-12 were measured by ELISA; (F) The expression levels of IKKα, IKKβ, p65, p52, TRIF, MyD88, TRAF6, and TAK1 in colon tissues were measured by West-
ern blot at 5, 9, 14, or 21 d postinfection. (G) The levels of anti-flagellin IgG and anti-LPS IgG in serum and MPO in colon tissues were measured at 28 d 
postinfection. Data are shown as the mean ± SD of six mice per group. * P < 0.05, ** P < 0.01, *** P < 0.001 vs. control
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Fig. 3 (See legend on next page.)
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inhibited the expression levels of some important factors 
involved in the MyD88/NF-κB signaling pathway includ-
ing MyD88, TRIF, TRAF6, TAK1, IKKα, IKKβ, p65, and 
p52 in colon tissues compared with eGFP K181 infec-
tion (Fig.  4F). All the findings indicate that the MCMV 
IE-induced activation of the NF-κB signaling pathway 
contributed to colon inflammation in allogeneic skin 
transplantation mice.

eGFP K181 infection promotes colon permeability, 
necrosis, and inflammatory cell infiltration in allogeneic 
skin transplantation mice via MyD88-dependent NF-κB 
activation
To further investigate the regulation of NF-κB in MCMV 
infection, transplantation was performed as mentioned 
above, and 80 µL of MEM containing 1 × 105 PFU eGFP 
K181 was inoculated intranasally into MyD88(+/+) or 
MyD88(−/−) allogeneic skin transplantation mice and 
serum and colon tissue samples were collected at 5, 9, 14, 
21, or 28 d postinfection (Fig. 5A). eGFP K181 infection 
in colon tissues was confirmed by immunofluorescence 
both in MyD88(+/+) and MyD88(−/−) mice (Fig. 5B), and 
the MCMV DNA copy numbers (Fig.  5C) and MCMV 
IE1 expression (Fig. 5D) in colon tissues were decreased 
in Myd88(−/−) mice after eGFP K181 infection com-
pared with Myd88(+/+) mice at 5, 9, 14, or 21 d postin-
fection. Moreover, the body weight was increased and 
colon barrier permeability, necrosis, and inflammatory 
cell infiltration were decreased in MyD88(−/−) mice after 
eGFP K181 infection compared with MyD88(+/+) mice 
(Fig. 5E and G). This finding indicates that MCMV infec-
tion increased colon permeability and promoted necrosis 
and inflammatory cell infiltration via MyD88-dependent 
NF-κB activation in mice following skin transplantation.

eGFP K181 infection activated the NF-κB signaling 
pathway in allogeneic skin transplantation mice via MyD88
We also further checked MyD88’s role in NF-κB signal-
ing pathway activation. Our results showed that inflam-
matory cytokine levels were decreased in MyD88(−/−) 
mice after eGFP K181 infection (Fig.  6A and E). Levels 
of some important factors involved in the MyD88/NF-κB 
signaling pathway, including TRIF, TRAF6, TAK1, IKKα, 
IKKβ, p65, and p52 in colon tissues, were decreased in 
MyD88(−/−) mice after eGFP K181 infection (Fig.  6F). 
The levels of anti-flagellin IgG, anti-LPS IgG, and MPO 
were also decreased in MyD88(−/−) mice after eGFP 

K181 infection (Fig. 6G). Together, the findings indicate 
that MCMV infection increased colon inflammation via 
MyD88-dependent NF-κB activation in allogeneic skin 
transplantation mice.

Discussion
Herein, we reported that CMV infection increased 
colon permeability, promoted necrosis and inflamma-
tory cell infiltration, and enhanced colon inflammation 
in allogeneic skin transplantation mice. We also proved 
that MCMV infection increased colon inflammation by 
activating NF-κB signaling. Mechanism studies showed 
that MCMV’s activation of NF-κB signaling was MyD88-
dependent in allogeneic skin transplantation mice. For 
the first time, our study indicated that MCMV infection 
initiates IBD by activating a positive MyD88/NF-κB feed-
back loop in allogeneic skin transplantation mice (Fig. 7).

CMV causes severe disease in immunocompromised 
individuals. CMV infection also exacerbated ulcerative 
colitis [10]. CMV infection in IBD was associated with 
an increased risk of mortality [33]. Traditionally, research 
systems studying the molecular biology and pathogenic 
mechanisms of CMV use either HCMV in cultured 
human cells or MCMV in its natural host species. Com-
pared with those in vitro studies, in vivo approaches are 
advantageous because they better reflect the complexity 
of human conditions. Ni et al. have described a mouse 
model of MCMV-induced interstitial pneumonitis after 
skin transplantation and CsA immunosuppression, sug-
gesting the roles of HCMV infection in the pathogenesis 
of interstitial pneumonia in transplant recipients [22]. To 
study the role of MCMV infection in IBD, we develop a 
progressive mouse model of MCMV colon inflamma-
tion following allogeneic skin transplantation between 
BALB/c and C57BL/6 mice and administered CsA to 
suppress allograft rejection. Our findings demonstrate 
that a dose (1 × 105 PFU) of MCMV significantly induced 
weight loss, colon permeability, necrosis, and inflamma-
tory cell infiltration, suggesting the progressive course of 
colon inflammation occurred after the MCMV infection 
of skin-transplanted mice, and viral replication in colon 
tissues resulted in pathological abnormalities. However, 
the discrepancy in weight loss, the MCMV copy number, 
and the infection level can be attributed to several fac-
tors. First, the detection method for eGFP fluorescence 
might not be as sensitive as the method for quantifying 
the MCMV copy number. The assay for the infection 

(See figure on previous page.)
Fig. 3 Effect of hMIEP-eGFP K181 infection on colon barrier permeability in allogeneic skin transplantation mice. 1 × 105 PFU hMIEP-eGFP K181 or eGFP 
K181 were inoculated intranasally into allogeneic skin transplantation BALB/c mice on day 14 posttransplantation. (A) A schematic representation of the 
assay indicating time points of transplantation and MCMV infections. (B) MCMV infection in colon tissues was confirmed by immunofluorescence with 
positive eGFP (Scale bar: 50 μm); (C) MCMV DNA and (D) IE1 levels in colon tissues were measured by PCR and Western blot, respectively; (E) Body weight 
and (F) colon barrier permeability were measured; (G) Necrosis (blue arrow) and inflammatory cell infiltration (red arrow) of colon tissues at 5, 9, 14, or 21 
d postinfection (Scale bar: 100 μm). Data are presented as the mean ± SD of six mice per group. *** P < 0.001 vs. eGFP K181
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level could be measuring a downstream effect of the 
viral presence, and there may be a saturation or a delay 
in the manifestation of this effect [34]. Second, the host 
immune response may play a role. As the virus replicates 
and the copy number increases, the immune system is 
also mounting a response [35]. In the MCMV infection 
group, it is possible that the immune response is able 

to contain the spread of the virus to new cells, prevent-
ing a proportional increase in the overall infection level. 
The virus may be replicating within a limited set of cells, 
and the immune system is controlling its dissemination, 
thus maintaining a relatively stable infection level. More 
importantly, MCMV infection will eventually enter the 
latent infection phase, during which MCMV-infected 

Fig. 4 Effect of hMIEP-eGFP K181 infection on the NF-κB signaling pathway in allogeneic skin transplantation mice. 1 × 105 PFU hMIEP-eGFP K181 or eGFP 
K181 were inoculated intranasally into allogeneic skin transplantation BALB/c mice on day 14 posttransplantation. The serum levels of (A) TNF-α, (B) IL-1β, 
(C) IL-6, (D) IL-8, and (E) IL-12 were measured by ELISA; (F) The expression levels of IKKα, IKKβ, p65, p52, TRIF, MyD88, TRAF6, and TAK1 in colon tissues were 
measured by Western blot at 5, 9, 14, or 21 d postinfection. Data are shown as the mean ± SD of six mice per group. * P < 0.05, *** P < 0.001 vs. eGFP K181
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Fig. 5 (See legend on next page.)
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cells will express IE1 but not release mature virus parti-
cles. Regarding the unexpected pattern of body weight in 
the MCMV infection group, it is also possible that early 
MCMV infection can cause a variety of physiological dis-
ruptions, such as anorexia, inflammation, and metabolic 
dysregulation, all of which contribute to weight loss [36]. 
However, the subsequent gradual increase in body weight 
is likely a result of the host’s recovery mechanisms. As the 
immune response begins to gain the upper hand against 
the virus, the acute symptoms start subsiding. The host 
may begin to regain its appetite, and the inflammation-
related metabolic costs decrease. These findings indicate 
a critical role of MCMV infection in the regulation of 
colon inflammation and improve our understanding of 
IBD pathogenesis.

NF-κB plays an essential role in multiple biological 
processes [37]. NF-κB activation promotes the prolifera-
tion and invasion of tumor cells [38]. NF-κB activation 
also regulates a proapoptotic program in retinal peri-
cytes [39]. Atreya et al. indicated that activating NF-κB 
contributed to chronic mucosal inflammation in IBD 
patients [40]. Wang et al. reported that IL-6 induces 
NF-κB activation to enhance the expression of intercel-
lular adhesion molecule 1, which is involved in the neu-
trophil-epithelial interactions in IBD [41]. CMV infection 
has been shown to promote the LPS or flagellin stimula-
tion of macrophages [42]. Furthermore, LPS and flagellin 
can subsequently activate NF-κB signaling through either 
TLR/TRIF or TLR/MyD88 pathways [43]. In this study, 
we demonstrated that MCMV infection increased the 
levels of flagellin and LPS, which could result in NF-κB 
activation. This finding offers a more comprehensive 
explanation for why MCMV infection promotes colon 
permeability and inflammation in allogeneic skin trans-
plantation mice.

The role of NF-κB in the life cycle of CMV is compli-
cated, and CMV-mediated NF-κB activation plays a key 
role in MIEP activation, IE expression, and CMV gene 
cascade initiation [17]. Subsequently, the de novo syn-
thesis of p50 and p65 occurs [44]. The CMV IE1 and IE2 
proteins can activate NF-κB-dependent transcription 
[30, 31], and IE3 gene products are required to activate 
the early-stage gene expression of MCMV [32]. More-
over, MIEP, which is essential for CMV growth, controls 
IE gene expression to affect viral replication [45, 46]. We 
discovered that hMIEP-eGFP K181 (Knockout MCMV 
IE1-3 promoter) slowed down viral replication and 

decreased colon permeability, necrosis, inflammatory cell 
infiltration, inflammation, and NF-κB activation. These 
findings provide more information regarding the regula-
tory mechanism of MCMV in the NF-κB signaling path-
way in colon permeability and inflammation in allogeneic 
skin transplantation mice.

MyD88 mediates the induction of inflammatory cyto-
kines through NF-κB [42]. Diomede et al. have dem-
onstrated that LPS leads MyD88 activation, triggering 
proinflammatory cytokine secretion [13]. MyD88 can 
induce the phosphorylation of IκBα, which will be 
degraded by proteasome. Once IκBα is degraded, NF-κB 
translocates to the nucleus and binds to the promoter 
region of inflammatory genes to boost their transcrip-
tion [42]. Our results showed that MyD88 knockout 
reduced MCMV infection induced an increase in colon 
permeability and colon inflammation and also inhibited 
the protein expression of MCMV IE1, which has multi-
ple functions and is important for efficient viral infection 
[18]. The infection level was decreased in MyD88(−/−) 
mice, perhaps due to the limited expression of MCMV 
IE1 caused by the absence of MyD88, preventing viral 
replication and the confinement of the virus to infected 
cells. These data confirmed that there is positive feedback 
between CMV infection and MyD88/NF-κB activation. 
We mainly dealt with animals, a situation that might not 
be representative of the experience with patients. Future 
studies with patients’ specimens will provide more rel-
evant data.

In conclusion, our findings demonstrate the signifi-
cance of MyD88-dependent NF-κB activation in MCMV 
infection and colon inflammation, which may benefit the 
treatment of IBD.

(See figure on previous page.)
Fig. 5 Effect of eGFP K181 infection on colon barrier permeability in allogeneic skin transplantation mice. 1 × 105 PFU eGFP K181 were inoculated intrana-
sally into allogeneic skin transplantation MyD88(−/−) and MyD88(+/+) BALB/c mice on day 14 posttransplantation. (A) A schematic representation of the 
assay indicating time points of transplantation and eGFP K181 infection. (B) MCMV infection in colon tissues was confirmed by immunofluorescence with 
positive eGFP (Scale bar: 50 μm); (C) MCMV DNA and (D) IE1 levels in colon tissues were measured by PCR and Western blot, respectively; (E) Body weight 
and (F) colon barrier permeability were measured; (G) Necrosis (blue arrow) and inflammatory cell infiltration (red arrow) of colon tissues at 5, 9, 14, or 21 
d postinfection (Scale bar: 100 μm). Data are shown as the mean ± SD of six mice per group. * P < 0.05, *** P < 0.001 vs. Myd88(+/+)
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Fig. 6 Effect of eGFP K181 infection on colon inflammation and the NF-κB signaling pathway in allogeneic skin transplantation mice. 1 × 105 PFU eGFP 
K181 were inoculated intranasally into allogeneic skin transplantation MyD88(−/−) and MyD88(+/+) BALB/c mice on day 14 posttransplantation. The 
serum levels of (A) TNF-α, (B) IL-1β, (C) IL-6, (D) IL-8, and (E) IL-12 were measured by ELISA; (F) The expression levels of IKKα, IKKβ, p65, p52, TRIF, MyD88, 
TRAF6, and TAK1 in colon tissues were measured by Western blot at 5, 9, 14, or 21 d postinfection. (G) The levels of anti-flagellin IgG and anti-LPS IgG in 
serum and MPO in colon tissues were measured at 28 d postinfection. Data are shown as the mean ± SD of six mice per group. ** P < 0.01, *** P < 0.001 
vs. Myd88(+/+)
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