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Abstract 

Background  Viral metagenomics has expanded significantly in recent years due to advancements in next-genera-
tion sequencing, establishing it as the leading method for identifying emerging viruses. A crucial step in metagenom-
ics is taxonomic classification, where sequence data is assigned to specific taxa, thereby enabling the characterization 
of species composition within a sample. Various taxonomic classifiers have been developed in recent years, each 
employing distinct classification approaches that produce varying results and abundance profiles, even when analyz-
ing the same sample.

Methods  In this study, we propose using the identification of Torque Teno Viruses (TTVs), from the Anelloviridae fam-
ily, as indicators to evaluate the performance of four short-read-based metagenomic classifiers: Kraken2, Kaiju, CLARK 
and DIAMOND, when evaluating human plasma samples.

Results  Our results show that each classifier assigns TTV species at different abundance levels, potentially influencing 
the interpretation of diversity within samples. Specifically, nucleotide-based classifiers tend to detect a broader range 
of TTV species, indicating higher sensitivity, while amino acid-based classifiers like DIAMOND and CLARK display lower 
abundance indices. Interestingly, despite employing different algorithms and data types (protein-based vs. nucleo-
tide-based), Kaiju and Kraken2 performed similarly.

Conclusion  Our study underscores the critical impact of classifier selection on diversity indices in metagenomic anal-
yses. Kaiju effectively assigned a wide variety of TTV species, demonstrating it did not require a high volume of reads 
to capture diversity. Nucleotide-based classifiers like CLARK and Kraken2 showed superior sensitivity, which is valu-
able for detecting emerging or rare viruses. At the same time, protein-based approaches such as DIAMOND and Kaiju 
proved robust for identifying known species with low variability.
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Introduction
A primary function of metagenomic next-generation 
sequencing (mNGS) is the characterization of micro-
bial abundance including protozoa, bacteria and viruses, 
across diverse sample types, including clinical specimens 
[1]. In the context of etiological diagnosis of infectious 
diseases, mNGS is particularly valuable for its abil-
ity to detect unsuspected or emerging viruses, owing to 
the unbiased and comprehensive nature of this process 
[2–4]. Historically, viral metagenomics has been con-
centrated on short-read classification due to the higher 
depths of the sequencing and the low viral loads usually 
present in clinical samples [5, 6]. Due to the short frag-
ment size generated by mNGS, a primary challenge lies 
in achieving robust and reliable taxonomic classifica-
tion of the obtained reads [6–9]. Several computational 
approaches have been developed to surpass these chal-
lenges, improve the accuracy of viral metagenomic data 
classification and better estimate the taxon abundance [7, 
10, 11].

Many programs and computational pipelines are avail-
able for metavirome analysis and can be divided based on 
short and long reads. Such an abundance of taxonomic 
classifiers exhibits significant variations in key metrics 
including accuracy, speed, and computational resource 
requirements [7, 12]. Additional obstacles may include 
the high variability of taxonomic data, the limited com-
prehensiveness and static nature of databases used in 
classification, as well as substantial computational mem-
ory usage [7]. Most classifiers use similarity-based meth-
ods (homology and alignment) or composition-based 
approaches (oligonucleotide frequencies or k-mer match-
ing) [12], with notable differences observed between 
them [7, 10–13].

A suitable virus model for evaluating the classifica-
tion potential of taxonomic classifiers is represented by 
the anelloviruses, specifically the torque teno viruses 
(TTVs). These viruses are universally present, highly 
prevalent, and consistently rank among the most abun-
dant findings in human metagenomic surveys [14–16]. 
TTV are not known to be associated with clinical dis-
eases and are considered a commensal component of the 
human virome. To date, TTV is represented by 29 spe-
cies. However, this number is relatively low given the fre-
quent discovery of novel species through metagenomics 
[17]. A limited set of TTV reference genomes may affect 
classification accuracy, potentially leading to misassign-
ments and the underrepresentation of certain lineages. 
However, numerous TTV species absent from reference 
databases may still be present in clinical samples. There-
fore, a primary focus is to determine whether the taxo-
nomic classifiers, based on their algorithms, would assign 
a greater or lesser number of known TTV species.

We hypothesized that the universal presence of TTV 
in the metavirome, along with its high genetic variability, 
could correlate to the effectiveness of taxonomic classi-
fiers in accurately identifying viruses. Anelloviruses are 
suitable for classification purposes compared to other 
commensal viruses, such as human pegivirus-1 (HPgV-1) 
and bacteriophages. HPgV-1 exhibits a lower prevalence 
that varies depending on the tested group, being higher 
in high-risk patients and lower in the general population 
[18, 19]. Bacteriophages display a higher abundance in 
stool samples compared to plasma [20], but they belong 
to diverse families and subfamilies with varying genomic 
organization and lengths. This diversity renders them less 
suitable for use as classification controls, particularly in 
the context of plasma samples. In contrast, anelloviruses 
are nearly universally present across the population, 
making them more appropriate and specific for classifica-
tion purposes.

Therefore, in this study, we evaluated four different 
short-read classifiers: nucleotide-based: Kraken2 [21, 
22] and CLARK [23], protein-based: Kaiju [24] and DIA-
MOND [25]. These classifiers were chosen based on their 
widespread use in metagenomic studies and their reli-
ance on distinct algorithms and databases, providing a 
comprehensive comparison of their performance in han-
dling highly variable viral genomes. Using a universally 
present virus, like TTV, we assessed how each classifier 
handles viral diversity and accurately estimated TTV 
abundance in metagenomic samples.

Materials and methods
Clinical samples and raw sequence data
For this study, we used three raw sequence datasets from 
our previously published studies [26, 27]. The metagen-
omic analysis was conducted on plasma samples pooled 
together to reduce sequencing costs. Reverse transcrip-
tion, amplification, and library preparation were per-
formed as previously described [28]. The raw reads were 
generated by Illumina NextSeq 1000/2000 sequencer 
using the P3 flow cell. The sample pools were named AL1, 
PR2, and PR3. Pool AL1 contained plasma samples from 
acutely infected patients with inconclusive amplification 
profiles for dengue (DENV), zika (ZIKV) and chikungu-
nya (CHIKV) viruses [26]. Pools PR2 and PR3 consisted 
of pooled plasma samples obtained from patients with 
prostate cancer [27]. Plasma samples were specifically 
chosen to standardize the study within a particular sam-
ple type, ensure the presence of TTVs, and take advan-
tage of our prior experience working with them.

Processing of the raw sequencing data
The raw sequencing data was processed by a pipeline 
composed of the following main steps: quality control 
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and pre-processing, mapping the filtered sequences and 
taxonomic classification (Fig.  1). This in-house estab-
lished pipeline has been deposited online at https://​
github.​com/​gmcam​pos27/​Metav​irome​Pipel​ine.

In brief, raw sequencing data were assessed for their 
quality using FastQC v.0.11.8 [29]. Trimming, filtering, 
and adaptor removal were performed using fastp v.0.20.0 
[30]. Host depletion was performed in silico through 
human read mapping using the Burrows-Wheeler 
Aligner (BWA) v.0.7.17-r1188 [31]. We applied the BWA-
MEM algorithm with the Homo sapiens genome (NCBI 
GRCh38.p14) as the reference. Unmapped Filtered reads 
(non-human reads) were subsequently classified taxo-
nomically by the four classifiers included in this study.

Reference database
The choice of database significantly impacts the taxo-
nomic profile, as using a comprehensive database 
compared to an optimized subset can lead to varying 
assignments, even with identical settings. To focus solely 
on the classifier’s influence, we utilized the same database 
across all classifiers: NCBI RefSeq Viruses. Since this is 
a pre-existing database, installation guidelines are avail-
able on the official pages of each classifier (Supplement 
Table 1).

Metagenomic classifiers
We selected the metagenomic classifiers based on the 
following criteria: (i) ability to generate customized 

databases, (ii) open-source accessibility, (iii) applicabil-
ity for pathogen detection (principally viruses), and (iv) 
the type of sequence database utilized. We selected two 
classifiers that incorporate nucleotide databases, Kraken 
v.2.1.3 and CLARK v.1.3.0.0, and two employing peptide 
databases, Kaiju v.1.8.2 and DIAMOND v.2.0.14.152, in 
addition, to access metagenomic profile, we use it along-
side with MEGAN v.6.22.2 [32]. The classifiers used are 
not exclusive to plasma samples, as they are designed for 
the analysis of any sample type, including environmental 
or clinical samples, irrespective of the virus abundance 
present. More information regarding the characteristics 
of the classifiers can be found in Supplement Table  1. 
Profiling commands are provided in Supplementary 
Material 1.

Diversity analysis
To assess the performance of the classifiers, we compared 
the TTV relative abundance per classifier and calculated 
alpha diversity indexes (Shannon, Simpson, and Rich-
ness). We examined the classifiers’ similarity using the 
obtained abundance data by applying hierarchical clus-
tering with Euclidean distance. We used two metrics: 
one representing the total number of reads detected and 
another indicating virus presence or absence. These data 
were presented in heatmaps, in which the read counts 
were normalized using a z-score for better visualization.

Finally, we generated rarefaction curves for each clas-
sifier to evaluate the viral richness in general and more 

Fig. 1  Pipeline used in this study. Each raw sample progresses through three main stages: Quality Control using FastQC and fastp, Mapping using 
BWA, and Taxonomic Classification. For the classifier DIAMOND, an additional program, MEGAN6 is necessary to generate abundance profiles, 
as DIAMOND alone does not produce them. This workflow ensures that all sequences are processed equally

https://github.com/gmcampos27/MetaviromePipeline
https://github.com/gmcampos27/MetaviromePipeline
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specifically for the TTV species. All analyses were per-
formed using R v.4.3.1 [33] with the packages vegan 
v.2.6-6 [34] and ggplot2 v.3.5.1 [35], colors were provided 
using wesanderson color palette v.0.3.7 [36].

Statistical analysis
To evaluate differences in sequence reads assigned to 
TTVs across all classifiers, we performed the two-tailed 
Mann–Whitney U test (α = 0.05), a non-parametric sta-
tistical test. To account for multiple comparisons, p-val-
ues were corrected using the Benjamini-Hochberg (BH) 
method. Read counts were previously normalized using 
log2 (counts per mil reads, CPM) to improve visualization 
and maintain statistical consistency. CPM normalization 
was chosen due to the fact it accounts for sequencing 
depth, facilitating comparisons across samples.

Results
Number of viral reads assigned by each classifier
The generated pools  had a mean of 92,181,048 total 
reads. The quantitative characteristics of the mNGS after 
trimming and retrieving the human and unmapped reads 
are shown in Table  1. Information regarding the total 
number of reads was retrieved from the original articles 
[26, 27].

A comparison of the three sample pools (AL1, PR2, and 
PR3) revealed distinct patterns in the assignment of viral 
and TTV reads, highlighting variations in the perfor-
mance of each classifier.

CLARK showed consistent behavior across all three 
samples, assigning 1,400,546 viral reads in each sam-
ple and identifying 18,801 TTV reads, regardless of the 
sample analyzed. However, while the total number of 
TTV reads was the same, the distribution of TTVs var-
ied between the samples. On the other hand, Kraken2 

assigned a very low number of viral reads in PR2, with 
301 reads, but 261 reads were attributed to TTVs. In PR3 
and AL1, the number of viral reads increased to 1,134 
and 6,112, respectively. However, this increase did not 
correlate with TTV reads, as Kraken2 detected 882 TTV 
reads in PR3 and only 150 in AL1.

Kaiju demonstrated variable performance across the 
analyzed samples. In sample AL1, it detected 11,413 viral 
reads and 288 TTV reads. However, in PR2 and PR3, 
these numbers increased to 50,575 and 55,232 viral reads, 
with 280 and 457 TTV reads, respectively. These differ-
ences may reflect variations in the metagenomic compo-
sition of the samples. Similarly, Diamond also exhibited 
notable variation across the three samples. In AL1, Dia-
mond detected 1,003,610 viral reads, including 19,708 
TTV reads. In PR2 and PR3, the number of viral reads 
decreased to 32,998 and 139,113, respectively, while 
TTV reads dropped to 130 and 560. Given the universal 
presence of TTVs, we further evaluated their abundance 
across the included samples using different classifiers to 
better understand their classification capabilities.

Pool AL1: undetermined arboviruses
The analysis of the abundance of Pool AL1 revealed the 
presence of a high number of reads related to arbovi-
ruses (DENV type 2 and CHIKV), as stated in Souza 
et  al., 2022. Moreover, a high diversity of commensal 
viruses was observed, across different subspecies of TTV. 
CLARK provided the highest TTV abundance in the 
sample AL1 (Fig.  2A). This classifier detected the high-
est number of unique Alphatorquevirus species (Fig. 2A), 
along with the highest TTV richness value (25 - Fig. 2G). 
The low Simpson diversity in this pool for CLARK, com-
pared with a relatively high Shannon diversity index, 
suggests that the distribution of species is not even and 

Table 1  Quantitative representation of the obtained reads from the pools

Pool name Total read number Reads after trimming Human reads Unmapped reads

AL1 23 101,593,212 46,754,909 8,527,762 279,814

PR1 24 88,341,428 86,320,012 58,487,186 27,755,645

PR2 24 86,608,503 85,432,732 58,458,464 26,841,137

Fig. 2  Comparison of TTV abundance and diversity across different taxonomic classifiers for AL1. A Relative abundance of TTVs identified by each 
classifier, with values ranging from 0 to 1.0 on the y-axis. on the y-axis. B Z-score normalized heatmap displaying read counts per classifier, with Kaiju 
forming an outer cluster. C Qualitative heatmap of the detected species, clustering similar-based classifiers; the x-axis represents classifiers, 
while the y-axis lists viral species, including unclassified Alphatorquevirus. D Natural log-transformed boxplot of read counts, with Clark yielding 
the highest number of reads. E–G Shannon, Simpson, and Richness diversity indices, respectively. H Rarefaction curves, with solid lines representing 
all viruses and dotted lines indicating only TTV species. I Same as (H), but with the x-axis limited to 30,000 reads for a clearer view of the initial 
rarefaction pattern

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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there are some species that are dominant in terms of fre-
quency. When considering reads assigned to the TTV 
subspecies altogether, the classifiers based on nucleotide 
sequences—Kraken2 and CLARK—clustered closely, 
followed by DIAMOND and Kaiju, which formed a dis-
tantly located cluster (Fig. 2B). This distinct classification 
pattern is evident in Fig. 2B, where Kaiju exhibits strong 
signal intensities for multiple TTVs, particularly for TTV 
29. This elevated presence potentially skews the over-
all uniformity of the sample, as it also suggests a higher 
Simpson value obtained by Kaiju (Fig. 2E). Additionally, 
Kaiju identified the lowest number of unclassified alpha-
torqueviruses, further supporting its distinct cluster-
ing behavior. When classifiers were grouped only by the 
absence and presence of TTV, classifiers of the same type 
were grouped (Fig. 2C).

Regarding the number of reads, CLARK attributed 
the highest number as belonging to TTVs, followed by 
DIAMOND, while Kraken2 and Kaiju produced compa-
rably lower read counts (Fig. 2D). This distribution sug-
gests that despite classifying a lower number of reads, 
Kaiju effectively assigned a wide variety of TTV species. 
CLARK generated a significantly higher number of TTV 
reads, indicating its capacity to detect a broader range of 
TTV sequences than other classifiers. Statistical analysis 
using the Mann–Whitney U Test confirmed the signifi-
cance of this difference, with p-values below the stipu-
lated alpha (0.05) for all comparative analyses involving 
CLARK (Table 2). This observation suggests that CLARK 
might potentially be more sensitive in detecting the total 
of the TTV species.

The construction rarefaction curve illustrated the 
observed differences in the TTV classification potential 
of the used classifiers (Fig. 2H, I). CLARK demonstrated 
the slowest rarefaction trend, indicating that it required 
a higher read count to reach a plateau, reflecting its abil-
ity to identify a higher number of TTV species. Consist-
ent with previous observations, Kraken2 and Kaiju were 
similar in terms of generating TTV abundance; how-
ever, Kaiju slightly outperformed Kraken2 by identify-
ing a broader range of species overall. DIAMOND, while 
showing the fewest numbers of TTV species detections 
(protein-based), demonstrated relatively high species 
counts when considering the total viral diversity.

Pool PR2: plasma samples from prostate cancer patients
The main finding in the sample PR2 highlights a substan-
tial presence of sequences belonging to Hepatitis C virus 
(HCV), alongside commensal viruses, such as TTVs [27]. 
Regarding the TTVs, in our study, DIAMOND identi-
fied only TTV 16, with other sequences being classified 
as unclassified alphatorqueviruses, which resulted in a 
lower value across all diversity indices (Fig. 3A).

While CLARK and Kraken2 demonstrated the highest 
TTV species richness [20], identifying a broad range of 
TTVs (Fig. 3G), their performance differed in other alpha 
diversity indices (Fig.  3E, F). CLARK exhibited lower 
Simpson and Shannon index values, suggesting that 
although both classifiers detected a similar number of 
species, Kraken2 assigned reads more evenly across taxa, 
whereas CLARK concentrated them in fewer species. 
This distinction influenced their clustering patterns, with 
CLARK grouping closely with DIAMOND in Fig. 3B due 
to the prevalence of uncharacterized alphatorqueviruses. 
In contrast, Kraken2 and Kaiju formed a separate cluster, 
likely reflecting similarities in read distribution patterns. 
As shown in Fig.  3C, G, Kraken2 and CLARK initially 
clustered together due to their shared richness levels, but 
broader clustering patterns later emerged, incorporating 
Kaiju and eventually DIAMOND.

Regarding the number of TTV reads assigned by each 
classifier, all performed similarly except for DIAMOND 
(Fig. 3D, H, I – dotted lines). Consequently, the Mann–
Whitney U Test revealed significant differences only 

Table 2  Mann–Whitney Test results for AL1

* p-value adjusted using BH method

Classifier 1 Classifier 2 p-value-adjusted*

Kraken 2 Kaiju 7.146874e−01

Kraken 2 DIAMOND 7.146874e−01

Kraken 2 CLARK 2.413528e−05

Kaiju DIAMOND 7.146874e−01

Kaiju CLARK 2.413528e−05

DIAMOND CLARK 8.133686e−02

(See figure on next page.)
Fig. 3  Comparison of TTV abundance and diversity across different taxonomic classifiers for PR2. A Relative abundance of TTVs identified by each 
classifier, with relative abundance values from 0 to 1.0 on the y-axis. B Z-score normalized heatmap of read counts, showing two main clusters: one 
formed by Kaiju and Kraken2, and another by CLARK and DIAMOND. C Qualitative heatmap of the detected species, DIAMOND was the outermost 
cluster because it did not assign many TTV species; the x-axis represents classifiers, while the y-axis lists viral species, including unclassified 
Alphatorquevirus. D Natural log-transformed boxplot of read counts, with DIAMOND yielding fewer reads, with outliers corresponding to TTV 
16 and unclassified Alphatorquevirus. E–G Shannon, Simpson, and Richness diversity indices, respectively. H Rarefaction curves, with solid lines 
representing all viruses and dotted lines indicating only TTV species. I Same as (H), but with the x-axis limited to 30,000 reads for a clearer view 
of the initial rarefaction pattern
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Fig. 3  (See legend on previous page.)
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in DIAMOND comparisons, as visually highlighted in 
Fig. 3C (Table 3).

Different from what was observed for AL1, the over-
all viral rarefaction curve indicated that Kaiju identifies 
more viral species, reaching a plateau later (Fig.  3H, I). 
However, for TTVs specifically, all classifiers exhibited 
similar performance, with DIAMOND detecting fewer 
species, as previously noted. Although CLARK, Kaiju, 
and Kraken2 assigned similar TTV read counts (Fig. 3D, 
H, Table 3), CLARK detected more species, indicating a 
potentially greater sensitivity. This aligns fully with the 
behavior observed for the sample AL1.

Pool PR3: plasma samples from patients with prostate 
cancer
According to the abundance obtained by Zanette et  al., 
2023, in this sample, a predominant finding was attrib-
uted to Mastadenovirus, Human Pegivirus-1, and TTV. 
Regarding the anelloviruses, DIAMOND attributed 
only a few species to these, and most of the reads were 
attributed as unclassified alphatorqueviruses (Fig.  4A, 
D), showing the lowest richness index (Fig. 4G). Kraken2 
and CLARK identified the highest number of species, 
with Kraken2 reaching the higher Shannon index (2.6 
- Fig.  4E). Kaiju performed similarly in both previous 
pools, several TTV species, and with a high number, 
which is shown in Fig. 4A, B.

Considering the number of reads assigned to each TTV 
species, Kaiju and Kraken2 exhibited similar perfor-
mance, as they clustered together. This was followed by 
a separate cluster comprising CLARK and DIAMOND 

(Fig.  4B). However, as previously mentioned, CLARK 
and Kraken2 identified a higher number of TTV species, 
clustering together in the binary heatmap (Fig. 4C). They 
were subsequently grouped with Kaiju, while DIAMOND 
formed the outermost group. Despite showing a similar 
number of reads, the Mann–Whitney test revealed sig-
nificant differences in read counts between Kraken2 and 
Kaiju, as well as between CLARK and Kaiju. Additionally, 
all classifiers were statistically different from DIAMOND 
due to its low number of TTV readings (Table 4).

Based on the rarefaction curve, the TTV species identi-
fied were very similar among Kraken2, Kaiju, and CLARK 
(Fig.  4H, I), with DIAMOND identifying the lowest 
diversity (Fig. 4A). However, in a broader context, DIA-
MOND identified more viral species than Kraken2. Kaiju 
reached a plateau with approximately 200 viral species, 
while CLARK has not yet reached a state of rarefaction.

Discussion
mNGS has revolutionized virus identification and discov-
ery, driving significant advancements in bioinformatics 
tools for taxonomic classification. However, the choice of 
the algorithm can influence the obtained results, which 
can significantly impact the interpretation. Short-read 
classifiers are widely used for viral metagenomics due to 
enhanced coverage and sequencing depths provided by 
this technology. In this context, we evaluated the per-
formance of four taxonomic classifiers in their ability to 
classify TTV types, which are universally present across 
diverse clinical samples. The abundance can be regarded 
as a suitable marker for assessing classifier performance 
while also highlighting their potential application in virus 
identification within clinical settings.

TTVs, belonging to the Alphatorquevirus genus of 
the Anelloviridae family are the most abundant viruses 
detected in metagenomic analysis. These commensal 
viruses have not been associated with any clinically rel-
evant symptoms to date. Similarly, they are very widely 
distributed worldwide, with a prevalence among the pop-
ulation studies reporting rates of up to 99% [37–39]. In 
addition to their prevalence, TTVs demonstrate remark-
able genetic diversity, with 26 species featuring com-
plete genomes currently available in the NCBI RefSeq 

Table 3  Mann–Whitney Test results for PR2

* p-value adjusted using BH method

Classifier 1 Classifier 2 p-value-adjusted*

Kraken 2 Kaiju 9.578743e–01

Kraken 2 DIAMOND 5.809736e−05

Kraken 2 CLARK 9.578743e−01

Kaiju DIAMOND 8.659291e−05

Kaiju CLARK 9.578743e−01

DIAMOND CLARK 5.809736e−05

Fig. 4  Comparison of TTV abundance and diversity across different taxonomic classifiers for PR3. A Relative abundance of TTVs identified 
by each classifier, with relative abundance values from 0 to 1.0 on the y-axis. B Z-score normalized heatmap of read counts, showing two main 
clusters: one formed by Kaiju and Kraken2, and another by CLARK and DIAMOND. C Qualitative heatmap of the detected species, DIAMOND 
forming the outermost cluster due to its limited assignment of TTV species; the x-axis represents classifiers, while the y-axis lists viral species, 
including unclassified Alphatorquevirus. D Natural log-transformed boxplot of read counts, with DIAMOND yielding the fewest reads, with outliers 
corresponding to TTVs 5, 15, 16, 29, and unclassified Alphatorquevirus. E–G Shannon, Simpson, and Richness diversity indices, respectively. H 
Rarefaction curves, with solid lines representing all viruses and dotted lines indicating only TTV species. I Same as (H), but with the x-axis limited 
to 30,000 reads for a clearer view of the initial rarefaction pattern

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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database. However, other studies suggest that their true 
diversity is greater, with new putative subspecies being 
continuously identified [17, 40]. This extensive prevalence 
and diversity underscore their suitability as a potential 
marker for taxonomic classifiers accurately identify and 
adequately show the viral abundance.

We observed distinct performance variations across all 
taxonomic classifiers, with differences in the total viral 
reads and TTV abundance assigned by each. The lowest 
TTV diversity was observed for the protein-based clas-
sifier DIAMOND. In this relation, the classified TTVs 
were the most external group in the generated heatmaps 
for samples PR2 and PR3 (Fig. 3C, 4C). We hypothesized 
that this outcome may be related to the lower diversity 
indexes observed for these samples, where a substantial 
number of TTV reads were detected but classified into a 
limited number of species. The taxonomic classifier DIA-
MOND is based on double-indexing which can explain 
the reached low abundance, as such a strategy limits 
false-positive classification [25]. We believe that another 
contributing factor may be related to the capsid protein 
similarity among TTVs. Although at the genomic level, 
these viruses are highly diverse, their structural proteins 
are homologous, which might have contributed to the 
lower abundance observed by the DIAMOND classifier 
[39, 41]. Additionally, according to Carbo et  al., 2022, 
protein-based classification can be less sensible to newly 
emerging viruses or be highly variable due to the lower 
mutation rates of the proteins, including the structural 
viral peptides [42, 43].

The other analyzed protein-based classifier, Kaiju, 
demonstrated distinct performance compared to DIA-
MOND, detecting a higher TTV diversity and attribut-
ing a relatively small number of sequences to unclassified 
alphatorqueteno viruses. This enhanced diversity detec-
tion is based on Kaiju´s algorithm to classify sequences, 
which first searches for maximum exact matches (MEM) 
of amino acid sequences in the given database and then 
performs a greedy search [24]. This dual search strategy 
allows Kaiju to detect amino acid substitutions more 
effectively, achieving higher sensitivity and precision 
in classification to identify the maximum number of 

present TTV sequences. The classification did not assign 
a high number of sequences read to individual TTV spe-
cies, as their relative abundances were more balanced. 
Additionally, the high alpha diversity indexes observed 
suggest that this classifier is well-suited for detecting a 
broad range of TTV species, albeit with a lower num-
ber of reads per species. This trend is also evident in 
the heatmaps (Figs.  2B, 3B, 4B). However, a fundamen-
tal limitation of protein-level sequence classification lies 
in its inability to classify reads from non-protein-coding 
regions [24]. In scenarios where microbial genomes are 
present in the reference database including such regions, 
Kaiju and DIAMOND may be less sensitive than nucleo-
tide-level classifiers, which are better equipped to handle 
these sequences.

Contrasting to the results obtained by DIAMOND and 
Kaiju, the nucleotide-based classifier CLARK demon-
strated the highest sensitivity, identifying a broad range 
of TTV species and yielding a consistently high richness 
index across all evaluated samples. CLARK was applied 
in its “full” mode, exhibiting greater sensitivity than the 
other classifiers. This full mode comprehends the value 
for k-mer length k = 20, which maximizes the number of 
assigned reads [23]. This setting may explain why, across 
all three analyzed samples, we obtained the same value 
for the viral and TTV reads with rarefaction curves 
reaching higher values without saturation (Figs. 2H, 3H, 
4H).

Despite the observed ability of CLARK to identify a 
large subset of TTVs species, the observed abundance 
may not fully represent reliable diversity. This is sug-
gested by the low Simpson and Shannon index values, 
which could indicate that a higher number of TTV spe-
cies were assigned with relatively few reads, reflecting an 
uneven diversity distribution.

Kraken2, probably the most widely used classifier in 
metagenomics, showed a qualitative heatmap profile 
similar to that of CLARK. This result was expected, as 
Kraken2 is also nucleotide-based and identifies a high 
abundance of TTV species through a similar algorithm 
using K-mers. Highly variable viral species belonging 
to the same genus, as seen in this case, can be easily 
misclassified using the K-mer algorithm [44]. For viral 
detection, Kraken2 may not be as sensitive as CLARK, 
but it tends to produce fewer false positives. These 
characteristics ensure that identified reads are more 
likely to be accurate, even if some lower-abundance or 
distantly related viral taxa are missed. This characteris-
tic makes Kraken2 reliable, though it may be less com-
prehensive in detecting rare or novel viral strains. The 
classification potential of Kraken2 was more like that 
of Kaiju when considering only the TTV reads, both 
in terms of read numbers and diversity indexes. This 

Table 4  Mann–Whitney Test results for PR3

* p-value adjusted using BH method

Classifier 1 Classifier 2 p-value-adjusted*

Kraken 2 Kaiju 1.064329e−01

Kraken 2 DIAMOND 1.232224e−03

Kraken 2 CLARK 9.468548e−01

Kaiju DIAMOND 1.783657e−02

Kaiju CLARK 1.063077e−01

DIAMOND CLARK 1.232224e−03
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observation underscores those classifiers employing 
completely different algorithms—K-mer and MEM—
and distinct genetic material databases (nucleotides 
and amino acids, respectively) can exhibit comparable 
results [21, 24, 44]. However, translated search classi-
fiers may have the advantage in scenarios with high 
genetic variability and sparsity of available reference 
genomes.

Conclusion
In this study, we evaluated the performance of nucleo-
tide- and protein-based taxonomic classifiers in identi-
fying TTVs within metagenomic datasets derived from 
clinical samples across different disease contexts. Our 
findings highlight the distinct advantages and limita-
tions of each classification approach. Nucleotide-based 
classifiers, such as CLARK and Kraken2, demonstrated 
superior sensitivity and are valuable for identifying a 
broader range of TTV species, making them particularly 
useful for detecting emerging or rare viruses, especially 
in unresolved clinical cases. In contrast, protein-based 
classifiers, including DIAMOND and Kaiju, demonstrate 
greater robustness in identifying known viral species 
with lower protein variability. These results underscore 
the importance of aligning the choice of taxonomic 
classifier with the novel or emerging viruses, the spe-
cific objectives of the study and the type of sample ana-
lyzed, given the unique strengths and limitations of each 
approach. Future research should explore the combined 
application of these classifiers, along with the inclusion 
of RNA viruses and the use of mock datasets, to enhance 
accuracy, precision, and reliability in metagenomic stud-
ies. By tailoring classifier selection to study goals and 
sample composition, researchers can optimize the utility 
of metagenomic sequencing for both clinical diagnostics 
and broader viromic investigations.
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