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Abstract 

Listeriosis, caused by Listeria monocytogenes (Lm), is a severe foodborne illness with a high fatality rate. Listeria phages 
specifically target and lyse Lm, offer a promising alternative for biocontrol and phage therapy. However, most existing 
studies focus on the lytic characteristics of Listeria phages using limited sample sizes. In this study, a large number 
of Listeria phages were isolated from diverse sources, and their lytic profiles and morphology were characterized. 
A total of 317 Listeria phages were isolated from 90 food-related environmental samples and 196 natural 
environmental samples collected across seven provinces. The phages were tested for lytic activity against 35 Lm 
strains representing nine serotypes, and their morphology was characterized using transmission electron microscopy 
(TEM). Statistical analysis was conducted to evaluate the lytic patterns of phages. The phages were classified into three 
groups based on their total lysis ratios. Broad Host Range Phages (BHRP) were primarily members of the Myoviridae-
like phages and demonstrated the ability to lyse a vast majority of nine serotype host strains. Medium Host Range 
Phages (MHRP) comprised both Siphoviridae-like and Myoviridae-like phages, and demonstrated lysis of 6–9 serotype 
strains. Narrow Host Range Phages (NHRP) belonged to the Siphoviridae-like phages and exhibited effective lysis 
of serotype 4 strains. Furthermore, phages isolated from food-related environmental sources demonstrated greater 
lytic activity against Listeria serotypes 1/2b, 4a, and 4c compared to those derived from natural environmental sources. 
The study first isolated a multitude of Listeria phages, elucidated their lytic patterns and ecological distribution, 
and provided a valuable resource for future research.
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Introduction
Listeriosis is the third most significant cause of mortality 
from foodborne pathogens, with a fatality rate of 20 to 
30% [1]. Listeria monocytogenes, a ubiquitous pathogen 
responsible for listeriosis, has the capacity to survive and 
proliferate over a broad range of temperatures (2–45◦ C ) 
and pH levels (4.6−9.5), as well as in the elevated salt 
concentrations [2, 3]. L. monocytogenes, is a genetically 
heterogeneous species comprising 14 serotypes (1/2a, 
1/2b, 1/2c, 3a, 3b, 3c, 4a, 4b, 4ab, 4c, 4d, 4e, 4 h and 7) 
that can be grouped into five distinct serogroups using 
a multiplex PCR scheme: IIa (1/2a, 3a), IIb (1/2b, 3b, 7), 
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IIc (1/2c, 3c), IVb (4b, 4d, 4e) and L (4a, 4c, 4ab) [4–6]. 
Epidemiological studies have demonstrated that the 
1/2a, 1/2b, 1/2c, 4b serotype strains are prevalent in food 
contamination [7, 8], and the 4b, 1/2a, and 1/2b serotype 
strains are responsible for 95% of human listeriosis cases 
[9].

Bacteriophages (phages) are viruses that are capable 
of specifically infecting and killing bacteria. Lytic phages 
infect and kill their bacterial host through a process 
known as lysis. The interest in bacteriophage therapy is 
growing, which can be attributed to the exceptional lysis 
specificity of these viruses [10–14].Phages host range 
refers to the spectrum of bacterial strains a phage can 
infect. Broad host range phages can lyse diverse strains 
across multiple serotypes, whereas narrow host range 
phages are restricted to a few closely related strains. 
However, no standardised definition distinguishes broad 
and narrow host range phages [15]. Listeria-specific 
bacteriophages, also referred to as Listeria phages, have 
been isolated from various sources. To date, more than 
500 Listeria phages have been identified. Nevertheless, 
only a limited number of virulent bacteriophages with 
the potential for Listeria biocontrol have been fully 
characterized at the molecular and genomic level [8, 9, 
16–18]. Although several studies have been conducted 
on the lysis characteristics of Listeria phages, the sample 
size was relatively limited, and the analysis was not 
sufficiently systematic [16, 17, 19].

This study aimed to isolate a diverse range of Listeria 
phages, examine their relationships with various serotype 
host strains, and investigate their morphological 
characteristics.

Methods
Sample collection
A total of 90 samples from food-related environments 
and 196 samples from natural environments were 
collected from seven provinces. The 90 food-related 
environmental samples comprise 58 seafood samples 
(obtained from the seafood markets), 7 swab samples 
(taken from the surface of pork cutting boards), 3 frozen 
food samples (frozen meet wontons, frozen hotpot 
meatballs and frozen dumplings), and 22 market sewage 
samples. The 196 natural environmental samples include 
63 soil samples, 88 sand samples, 2 spring water samples, 
and 43 seawater samples (Table 1).

Listeria monocytogenes strains
A total of 31 strains (referred to as isolation strains), 
including 21 laboratory-preserved strains and 10 newly 
isolated from the samples, were employed to isolate 
phages (Table 2). A total of 35 strains (referred to as host 
strains) were employed to assess the lytic activity of the 
isolated phages. The isolation strains and host strains are 
represented by nine serotypes (1/2a, 1/2b, 1/2c, 4b, 4d, 
4a, 4c, 3a, 3b) of L. monocytogenes, respectively (Table 2).

Isolation of phages
In accordance with the methodology outlined in reference 
[19–21], the samples were subjected to an overnight 
enrichment process in BHI broth, supplemented with 
31 distinct isolation strains and CaCl2. Subsequently, 
the cultures were collected and filtered. A portion of 
each filtered culture was combined with an individual 
isolated strain at a specified optical density (OD). Then 
the mixtures were incubated for a period of 24 to 48 h. 
Subsequently, the double-layer agar method applied 
bacteriophage mixtures to solid agar. The identification 
of the phages was conducted by observing plaque 

Table 1  Samples and isolated phages in this study

P1 to P7 represent different provinces, M1 to M6 represent different markets, and B1 to B8 represent different beaches. FE: Food-related environment; NE: Natural 
environment

Source Sample types(n) Samples per region (n) Isolated phages per Region (n) Total phages(n)

FE Seafood (58) P7 [M1 (12), M2 (8), M3 (7), M4 (13), M5 (11), 
M6 (7)]

P7 [M1 (3), M2 (7), M3 (7), M4 (4), M5 (5), M6 (4)] 30

Swab (7) P1 [7] P1 [22] 22

Frozen food (3) P1 [3] P1 [3] 3

Market 
sewage (22)

P1 [16], P7 [M1 (1), M2 (1), M3 (1), M4 (1), M5 (1), 
M6 (1)]

P1 [0], P7 [M1 (0), M2 (1), M3 (1), M4 (0), M5 (0), 
M6 (0)]

2

NE Soil (63) P1 [2], P2 [27], P3 [8], P4 [6], P5 [5], P6 [15] P1 [21], P2 [69], P3 [21], P4 [23], P5 [12], P6 [31] 177

Sand (88) P7 [B1 (11), B2 (11), B3 (11), B4 (11), B5 (11), B6 (11), 
B7 (11), B8 (11)]

P7 [B1 (6), B2 (3), B3 (10), B4 (1), B5 (6), B6 (2), 
B7 (15), B8 (3)]

46

Spring water (2) P3 [2] P3 [9] 9

Seawater (43) P7 [B1 (5), B2 (5), B3 (5), B4 (5), B5 (7), B6 (4), B7 (6), 
B8 (6)]

P7 [B1 (2), B2 (4), B3 (4), B4 (3), B5 (2), B6 (5), B7 (6), 
B8 (2)]

28
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formation, with the plaques subsequently undergoing 
purification on three occasions and stored at 4 °C.

Host‑range test
The lytic activity of bacteriophages was evaluated by 
measuring optical density at 600 nm (OD600). In brief, 
overnight cultures of host bacterial strains were initially 
diluted 1:100 in BHI medium and incubated at 37 ◦C with 
shaking at 200 rpm for 2 h. Subsequently, 100 µ L of each 
bacterial suspension was transferred into individual wells 
of a 96-well cell culture plate (Corning). Subsequently, 
100 µ L of either the phage suspension or BHI broth 
(which served as the negative control) was added to each 
well and the plate were incubated for 2-3 h at 30◦C . The 
OD600 for each well was determined using a microplate 
reader (BioTek, Washington, DC, USA). The C value 
is calculated as follows: C value = (OD600 of negative 
control wells - OD600 of test wells) / OD600 of nega-
tive control wells. A C value exceeding 0.22 was deemed 
indicative of positive lysis.

Serotype‑specific lysis ratio calculation
The serotype-specific lysis ratio was calculated as the 
proportion of host strains within a given serotype that 
were lysed by a phage. This was expressed as follows: 
Serotype-specific lysis ratio = (number of serotype-spe-
cific lysis-positive host strains/ total number of tested 
serotype-specific host strains) ∗  100%. This ratio was 
used to assess the efficiency of phage lysis across different 
serotypes.

Table 2  Isolation strains and host strains used in this study

Serotypes Source Strains

Isolation strain 1/2a Food Lm205

1/2a Food Lm043

1/2a Patient Lm261

1/2a Food Lm082

1/2a Unknown Lm3908

1/2b Food Lm021

1/2b Food Lm075

1/2b Food Lm097

1/2b Unknown Lm3910

1/2b Environment NL01

1/2b Environment NL02

1/2b Environment NL03

1/2b Environment NL04

1/2b Environment NL05

1/2b Environment NL06

1/2b Environment NL07

1/2c Environment Lm959

1/2c Environment Lm1088

1/2c Food Lm605

1/2c Unknown Lm3911

1/2c Environment NL08

1/2c Environment NL09

4b Food Lm086

4b Food Lm102

4b Food Lm594

4b Environment NL10

4d Food Lm061

4a Environment Lm1058

4c Food Lm637

3a Food Lm350

3b Food Lm083

Serotypes Source Strains

Host strain 1/2a Food Lm019

1/2a Food Lm0136

1/2a Patient Lm244

1/2a Food Lm329

1/2a Patient Lm841

1/2b Environment Lm716

1/2b Food Lm1290

1/2b Environment Lm1420

1/2b Environment Lm1670

1/2b Patient Lm188

1/2c Food Lm032

1/2c Food Lm058

1/2c Food Lm258

1/2c patient Lm416

1/2c Food Lm038

4b Food Lm0162

4b Food Lm1725

Italicized indicates unsuccessful phage isolation

Table 2  (continued)

Serotypes Source Strains

4b Food Lm331

4b Food Lm2869

4b Food Lm2876

4d Food Lm0063

4d Food Lm061

4d Food Lm065

4a Environment Lm1058

4a Environment Lm1331

4a Animal Lm1868

4c Food Lm161

4c Food Lm668

4c Food Lm165

3a Food Lm024

3a Food Lm0093

3a Patient Lm486

3b Food Lm354

3b Food Lm0083

3b Food Lm119
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Transmission electron microscopy
The purified phages were adsorbed onto formvar and 
carbon film-coated grids for one minute, and then 
stained with 1% (w/v) phosphotungstic acid (pH 6.8) for 
one minute. Following air drying, the grids were observed 
using a Tecnai 12 transmission electron microscope (FEI, 
Eindhoven, Netherlands) at 120 kV, with images captured 
using a charge-coupled device (CCD) camera.

Statistical analysis
The Wilcoxon rank-sum test was utilized to analyze 
the distribution of binary categorical variables. All 
statistical analyses were conducted using the R statistical 
computing software (version 4.4.0).

Results
Phages isolation of samples
A total of 317 Listeria phages were isolated, comprising 
57 from 90 food-related environmental samples and 
260 from 196 natural environmental samples (Table  1). 
Phages with identical lytic profiles from the same samples 
were excluded from further analysis, leaving 293 distinct 
phages for consideration.

Relationship between Listeria phages and host strains
In order to elucidate the ecological roles of phages, the 
phages were categorized into three groups based on total 
lysis ratios (total lysis ratio = lysis positive host strains / 
all tested host strains) against host strains: Broad Host 
Range Phages  (BHRP) with a lysis ratio>0.85; Medium 
Host Range Phages  (MHRP), with a lysis ratio between 
0.38 and 0.85; and Narrow Host Range Phages  (NHRP), 
with a lysis ratio<0.38. Of the 293 phages, 33 were 
identified as BHRP, 204 as MHRP, and 56 as NHRP.

Susceptibility of various serotype strains to phage
Broad Host Range phages  (BHRP) Among the broad 
host range phages  (BHRP), all nine tested serotype 
strains (including those frequently associated with food 
contamination and human listeriosis) were susceptible 
to the phages. However, a few individual strains, such 
as Lm331 (4b) and Lm258 (1/2c), exhibited resistance 
(Fig. 1; Tables 4, 5, 6).

Medium Host Range Phages  (MHRP) Among the 
medium host range phages  (MHRP), the susceptibility 
of the nine serotype strains to phages was found to 
vary. For serotypes frequently associated with food 
contamination (1/2a, 1/2b, 1/2c, 4b) and human 
listeriosis (1/2a, 1/2b, 4b), serotype 4b was found to be 
the most susceptible to phages, while serotype 1/2b 
was found to be the least susceptible. Notably, 1/2b 
strains exhibited low susceptibility to phages derived 
from natural environmental sources yet demonstrated 

comparable susceptibility to those derived from food-
related environmental sources, similar to that observed 
in 1/2a and 1/2c strains (Table 3; Fig. 2). A total of 80.39% 
of the phages tested were found to be effective against 
strains belonging to 8 or 9 serotypes, as indicated by 
the number of phages lysing these serotypes divided 
by the total number of phages in the MHRP  (Table  4). 
The data further indicated that 78.92% of MHRP was 
effective against strains from all serotypes associated 
with food contamination (Table  5), and 80.39% were 
effective against all serotype strains associated with 
human listeriosis (Table 6). These results were based on 
the phages lysing at least one strain of each serotype. 
Moreover, strains from nine serotypes exhibited high 
susceptibility to MHRP, showing 53.85% susceptibility to 
phages isolated from food-related environmental sources 
and 52.12% susceptibility to phages derived from natural 
environmental sources (Table 4).

Narrow Host Range Phages  (NHRP) It was 
demonstrated that strains of serotype 4a and 4b 
exhibited high susceptibility to the NHRP, while strains 
of other serotypes exhibited relatively low susceptibility 
(Fig.  3; Table  3). Furthermore, strains from five to 
seven serotypes demonstrated susceptibility to 80.36% 
of the phages, calculated as the ratio of phages lysing 
five to seven serotypes to the total number of phages 
in the NHRP (see Table  4 for details). Additionally, 
21.43% of the phages were effective against all serotype 
strains associated with food contamination (Table  5), 
and 26.79% were effective against all serotype strains 
associated with human listeriosis (Table 6). Furthermore, 
strains from five to six serotypes were susceptible to 
75.00%(calculated as the ratio of phages lysing five and 
six serotypes to total phages sourced from the food-
related environment in the NHRP) of phages derived 
from food-related environmental sources, while strains 
from 6 to 7 serotypes exhibited susceptibility to 56.25% 
(calculated as the ratio of phages lysing 6 and 7 serotypes 
to total phages sourced from the natural environment in 
the NHRP) of phages derived from natural environmental 
sources (Table 4).

Phage lysis against different serotype strains
A comparative analysis of phages derived from food-
related and natural environmental sources revealed dis-
crepancies in serotype-specific lysis ratios.

Among the 33 broad host range phages  (BHRP), the 
lysis ratios for serotypes were generally high, with all 
exceeding 90%. However, the lysis ratio for serotype 1/2c 
strains was relatively low (83.20%) for phages derived 
from natural environmental sources, and the lysis ratio 
for serotype 4c strains was also low (79.17%) for phages 
derived from food-related environmental sources (Fig. 4).
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Among the 204 medium host range phages  (MHRP), 
the lysis ratio for serotype 4a and 4c strains were relatively 
high (83.76% and 88.03% for food-related environmental 
sources; 74.55% and 76.36% for natural environmental 
sources), In contrast, the lysis ratios for serotype 1/2b 

and 3b strains were notably lower (53.33% and 39.32% for 
food-related environmental sources; 39.39% and 44.24% 
for natural environmental sources) (Fig. 4). Notably, the 
lysis ratios for serotype 1/2b, 4a, and 4c strains were 
significantly higher for phages derived from food-related 

Table 4  Number of serotypes lysed by various phage groups

Proportion = (Number of phages lysing the corresponding number of host strains / total number of phages from a specific source in BHRP, MHRP, or NHRP) * 100%. FE, 
food-related environment; NE, natural environment

Phage group Number of sensitive 
serotypes

Number (proportion) of 
phages from FE

Number (proportion) of 
phages from NE

Number (proportion) of 
total phages

BHRP 9 8 (100.00%) 25 (100.00%) 33 (100.00%)

MHRP 6 0 (0.00%) 4 (2.42%) 4 (1.96%)

7 6 (15.38%) 30 (18.18%) 36 (17.65%)

8 12 (30.77%) 45 (27.27%) 57 (27.94%)

9 21 (53.85%) 86 (52.12%) 107 (52.45%)

NHRP 4 1 (12.50%) 4 (8.33%) 5 (8.93%)

5 3 (37.50%) 11 (22.92%) 14 (25.00%)

6 3 (37.50%) 13 (27.08%) 16 (28.57%)

7 1 (12.50%) 14 (29.17%) 15 (26.79%)

8 0 (0.00%) 6 (12.50%) 6 (10.71%)

Table 5  Number of serotype commonly found in food contamination (1/2a, 1/2b, 1/2c, 4b) lysed by various phage groups

Proportion = (Number of phages lysing the corresponding number of host strains / total number of phages from a specific source in BHRP, MHRP, or NHRP) * 100%. FE, 
food-related environment; NE, natural environment

Phage group Number of sensitive 
serotypes

Number (proportion) of 
phages from FE

Number (proportion) of 
phages from NE

Number(proportion) 
of total phages

BHRP 4 8 (100.00%) 25 (100.00%) 33 (100.00%)

MHRP 2 1 (2.56%) 7 (4.24%) 8 (3.92%)

3 3 (7.69%) 32 (19.39%) 35 (17.16%)

4 35 (89.74%) 126 (76.36%) 161 (78.92%)

NHRP 1 4 (50.00%)  5 (10.42%)  9 (16.07%)

2 1 (12.50%)  16 (33.33%)  17 (30.36%)

3 1 (12.50%)  17 (35.42%)  18 (32.14%)

4 2 (25.00%)  10 (20.83%)  12 (21.43%)

Table 6  Number of serotype commonly found in human listeriosis cases (1/2a, 1/2b, 4b) lysedby various phage groups

Proportion = (Number of phages lysing the corresponding number of host strains / total number of phages from a specific source in BHRP, MHRP, or NHRP) * 100%. FE, 
food-related environment; NE, natural environment.

Phage group Number of sensitive 
serotypes

Number (proportion) of 
phages from FE

Number (proportion) of 
phages from NE

Number(proportion) 
of total phages

BHRP 3 8 (100.00%) 25 (100.00%) 33 (100.00%)

MHRP 1 1 (2.56%) 7 (4.24%) 8 (3.92%)

2 3 (7.69%) 29 (17.58%) 32 (15.69%)

3 35 (89.74%) 129 (78.18%) 164 (80.39%)

NHRP 1 4 (50.00%) 13 (27.08%) 17 (30.36%)

2 1 (12.50%) 23 (47.92%) 24 (42.86%)

3 3 (37.50%)  12 (25.00%) 15 (26.79%)
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environmental sources compared to those from natural 
environmental sources (53.33% vs. 39.39%, P = 0.011; 
83.76% vs. 74.55%, P = 0.045; and 88.03% vs. 76.36%, P < 
0.001; respectively).

Among the 56 narrow host range phages (NHRP), the 
serotype-specific lysis ratios were generally low, except 
for serotype 4 strains (4a, 4b, 4c, 4d), which exhibited 
higher lysis ratios (66.67%, 45.00%, 58.33%, and 41.67% 
for food-related environmental sources; 72.22%, 47.08%, 
79.86%, and 33.33% for natural environmental sources) 
(Fig. 4). Notably, no phage was found to exclusively target 
a single serotype.

Morphology of phages by transmission electron 
microscope
A total of 16 representative phages (8, 4 and 4 for BHRP, 
MHRP and NHRP) were selected for transmission 

electron microscopy (TEM) analysis based on their 
lytic profiles and sources (Fig.  5). The lytic profiles and 
detailed dimensions of the phages are presented in Fig. 6.

In the BHRP group, three phages were identified as 
Siphoviridae-like phages, with head diameters of 49.93 ± 
0.94 nm and contractile tails measuring 6.48 ± 0.27 nm in 
diameter and 238.65 ± 17.50 nm in length. Furthermore, 
five phages were classified as Myoviridae-like phages, 
exhibiting head diameters of 78.52 ± 4.99 nm, contractile 
tails with diameters of 22.80 ± 1.76 nm, and lengths of 
168.78 ± 19.92 nm.

In the MHRP group, two phages were identified as 
Myoviridae-like phage, with a head diameter of 77.32 ± 
1.43 nm, a contractile tail diameter of 21.46 ± 2.04 nm, 
and a length of 187.13 ± 4.57 nm. Two phages were clas-
sified as Siphoviridae-like phages, had head diameters of 
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56.97 ± 0.26 nm, contractile tail diameters of 9.74 ± 1.29 
nm, and tail lengths of 253.56 ± 1.69 nm.

In the NHRP group, four phages were identified as 
Siphoviridae-like phages, with head diameters of 54.39 ± 

2.92 nm, contractile tails of 7.97 ± 0.84 nm in diameter, 
and lengths of 246.22 ± 12.62 nm (Fig. 6).
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Discussion
Listeriosis is a severe foodborne illness with high fatality 
rates. It can result in miscarriage, spontaneous preterm 
labor, preterm birth, stillbirth, and congenital neonatal 
infections [1, 22]. Phages, as natural antibacterial agents, 
demonstrate considerable potential for the control of 
foodborne pathogens and the treatment of infectious 
diseases [16, 23, 24]. It is important to investigate the 
interactions between phages and Listeria to uncover 
the molecular mechanisms that could lead to the 
development of innovative antibacterial strategies. This 
study first conducted the large-scale endeavor to isolate 
Listeria phages from a multitude of sample environmental 
sources and diverse provinces, with 317 phages isolated. 
The host range of these phages was determined using a 
liquid culture method, which permitted the exploration 
of their lytic patterns and ecological distribution based 
on intraspecies serotype classification. Furthermore, 
their morphological characteristics were observed.

Several studies have provided insights into the 
morphology and distribution and abundance of phages in 
marine and soil environments. However, there is a lack 
of research isolating phages and characterizing their lytic 
activities [25]. Listeria-specific phages have been isolated 
from a variety of sources, including feces, wastewater, 
abattoir effluents, soil, farms, food products, and sewage 
[17, 18, 26–31]. Of the 500 identified Listeria phages, 
only a few have been fully characterized as virulent 
phages with potential for use in biological control [17, 19, 
32–34]. These virulent Listeria phages have the capacity 
to infect a range of major L. monocytogenes serotypes 
(1/2a, 1/2b, 1/2c, 4a, 4ab, 4b, 4c, 4d, 4e) and Listeria 
innocua serotypes 5, 6a, and 6b. To date, no Listeria 
phages have been identified that are capable of lysing L. 

monocytogenes serotypes 3a, 3b, 3c, or Listeria grayii [16, 
31]. Notably, several phages in this study were observed 
to lyse L. monocytogenes serotypes 3a and 3b strains.

Currently, there is no established reference standard for 
the lytic activity of phages. Furthermore, the categories 
such as “broad spectrum” and “narrow spectrum” 
lack clearly defined cutoff values. Using such terms is 
inherently subjective and provides limited comparability 
due to the relatively small sample sizes involved. This 
study inaugural attempt to categorize phages into three 
groups: broad host range phages  (BHRP), medium host 
range phages  (MHRP), and narrow host range phages 
(NHRP) based on total lysis ratios. This classification 
provides a comprehensive characterization of each group 
and elucidates the ecological roles of phages.

The vast majority of host strains, including those 
frequently associated with food contamination and 
human listeriosis, demonstrated susceptibility to BHRP 
phages in this study, this highlights the potential for their 
use in biocontrol and phage therapy applications. Further 
investigation is required to elucidate the resistance 
mechanisms observed in a few strains. Although L. 
monocytogenes is a well-known foodborne pathogen, 
25 of the 33 BHRP phages in this study were isolated 
from the natural environment. This finding underscores 
natural environments as a significant reservoir of broad-
spectrum phages.

The data indicate that phages in the NHRP group are 
capable of lysing serotype 4 strains, suggesting that sero-
type 4 strains exhibit greater ease of identification and 
lysis by phages. Therefore, serotype 4 strains are the 
most suitable for isolating Listeria phages. An additional 
potential explanation is the presence of variations in cell 
wall teichoic acids (WTA) between different serotypes 
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of L. monocytogenes. Serotype 4 has WTA with terminal 
glucose and galactose residues, which are essential for 
phage adsorption and host lysis [35]. It is noteworthy that 

the majority of mitomycin C-induced Listeria phages 
(30 out of 39) were capable of lysing hosts of L. monocy-
togenes serotype 4 [36].
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Fig. 5  Transmission electron microscopy images of isolated Listeria monocytogenes phages. Phages 17, 33, 263, 19, 225, 102, 62, and 251 belong 
to the Siphoviridae-like phage. Phages 211, 144, 201, 189, 130, 39, 208, and 222 belong to the Myoviridae-like phage family
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The lysis rates of BHRP phages were observed to be 
consistently high, while those of NHRP phages were 
found to be low across all cases in this study. In the 
MHRP group, food-related environment-sourced phages 
demonstrated a higher lysis rate against 1/2b strains than 
natural environment-sourced phages. Furthermore, the 
results also revealed that 1/2b strains exhibited greater 
susceptibility to phages derived from food-related envi-
ronments than those from natural environments. These 
findings suggest that food-related environments may bet-
ter support the survival and proliferation of 1/2b strains, 
aligning with previous studies reporting a high abun-
dance of serotype 1/2b among Listeria monocytogenes 
isolates from food and food-related environments [8, 
37–41]. To the best of our knowledge, there is no exist-
ing comparative study on isolates from both food-related 
environmental and natural environmental sources. Cur-
rent research on L. monocytogenes primarily focus on 
isolates from food-related environmental sources and 
patients. In contrast, studies on natural environmental 
isolates are limited and often lack consistency [42–44]. 
The findings in this study offer insights into the distri-
bution and ecological adaptability of Listeria in diverse 
environments.

It should be noted that this study has few limitations. 
The experimental design was not sufficiently 
comprehensive to permit exhaustive measurement of 
the host range. Accordingly, a diverse range of strains 
encompassing nine most prevalent serotypes was selected 
to ensure the attainment of representative results. It is 
conceivable that the host range may undergo alterations 
over time due to the co-evolution of phages and bacteria 

during successive propagation. This study describes 
the host range and morphology of the isolated Listeria 
phages. Further research is needed to evaluate the 
potential for more sophisticated applications, elucidate 
the mechanisms of bacterial resistance to phage, and 
gain a deeper understanding of the interactions between 
phages and hosts.

Conclusion
A total of 317 Listeria phages were isolated from a diverse 
array of sources in this study. The lysis patterns for nine 
serotypes of host strains and the ecological distribution 
of these phages were analyzed. The phages were classi-
fied into three groups based on their total lysis ratios. The 
majority of phages in the BHRP group are of the Myo-
viridae-like phages and are capable of lysing the major-
ity of host strains, with minimal resistance observed. The 
phages of the MHRP group include both Siphoviridae-
like and Myoviridae-like phages. Furthermore, phages 
isolated from food-related sources demonstrated greater 
lytic activity against Listeria serotypes 1/2b, 4a, and 4c 
compared to those derived from natural environmental 
sources. The phages in the NHRP group are of the Sipho-
viridae-like phages and are primarily capable of lysing 
serotype 4 strains. This study offers a valuable resource 
for the application of Listeria phages and provides new 
insights into the ecological distribution patterns of Lis-
teria phages based on their lytic profiles.
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