
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p :   /  / c r e a t i  
v e c  o m m  o n  s  . o  r  g /  l i c  e n s   e s  /  b y  - n c  -  n d / 4 . 0 /.

Li et al. Virology Journal           (2025) 22:89 
https://doi.org/10.1186/s12985-025-02696-9

Virology Journal

†Zhan Li, Min Peng and Linlin Cheng contributed equally to this 
work and share first authorship.

*Correspondence:
Ye Guo
4227582@163.com
Yongzhe Li
yongzhelipumch@126.com

Full list of author information is available at the end of the article

Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron has demonstrated decreased 
pathogenicity, yet a few individuals suffer severe pneumonia from coronavirus disease 2019 (COVID-19) infection; the 
underlying mechanisms are unknown.

Methods The present work investigated the role of Interferon-stimulated genes (ISGs) in the occurrence and 
progression of severe Omicron infection. The expression and dynamic changes of ISGs were assessed using 
quantitative real-time polymerase chain reaction (qRT-PCR), and the anti-ISG15 autoantibody in infected patients was 
detected by ELISA. Moreover, we evaluated the correlation of ISGs with disease severity and outcomes by comparing 
expression of ISGs among each group.

Results Decreased expression of several ISGs such as IFI6 are potentially linked to increased severity or poor 
outcomes of Omicron infection. Longitudinal data also demonstrates that the dynamic variation of IFI6 in the 
Omicron infection phase may be linked to the prognosis of the disease. The increase of anti-ISG15 autoantibody 
potentially links to the disease progression and poor outcome of patients with high level of ISG15 expression.

Conclusions These findings define aberrant Interferon-stimulated gene associated host responses and reveal 
potential mechanisms and therapeutic targets for Omicron or other viral infection.
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Introduction
The high transmissibility and immune evasion ability of 
Omicron sparked global alarm during the coronavirus 
disease 2019 (COVID-19) pandemic since it was asso-
ciated with a relatively lower risk of hospital admission 
than delta cases worldwide [1–5]. Major therapies for 
COVID-19 infection are based on anti-viral and anti-
inflammatory approaches [6]. Anti-viral drugs such as 
paxlovid, azvudine, remdesivir, and molnupiravir primar-
ily work best within 5 ~ 7 days of COVID-19 infection, 
and exhibit a strong protective efficacy against hospital-
ization and severity. Noticeably, Omicron has been linked 
to a significant increase in mortality, even in a highly 
vaccinated and increasingly immune population [7]. 
Therefore, research into immune responses to Omicron 
infection is critical to establish mechanisms and provide 
insights for future viral waves and therapeutic strategies.

Interferon (IFN) is crucial in protecting the host 
against virus infection. It is produced via the Cyclic-
GMP-AMP synthase-Stimulator-of-interferon genes 
defense pathway and functions through proteins encoded 
by Interferon-stimulated genes (ISG) [8, 9]. ISG is a criti-
cal effector of the host defending virus through the entire 
process, from viral entry and import through mRNA and 
protein synthesis, replication, and assembly [10]. ISG is 
prospective therapeutic target for anti-viral strategies 
and drugs based on ISG for viral infections such as HBV 
and HCV are under preclinical phases [11]. Many studies 
have focused on innate immune characteristics and the 
differences in host antiviral capacity among patients with 
varying severity of COVID-19 [12–14]. ISGs, includ-
ing IFI6, GBP5, IFI44L, MX1, IFITM3, IFIT2, OAS1, 
IFIT1, RSAD2, ISG15, IFITM1, and SIGLEC1 have been 
reported mostly in COVID-19 [12, 14–22]. Previous 
research on ISG, viral load, and interferon response in 
patients with diverse severity and variants of COVID-19 
infection have demonstrated significant inconsistency 
and focused less on the distinct expressions of ISGs [12, 
13, 23–25]. More importantly, though available inves-
tigations have assessed the functions of autoantibod-
ies against type I IFNs in COVID-19 infection, research 
on autoantibodies in ISG associated host responses is 
scarce [26]. As a result, the present study examined ISG 
expression at transcriptional levels in COVID-19 patients 
infected with the Omicron variant and autoantibody 
responses to ISG encoded proteins in their plasma.

Methods
Subjects and samples
We enrolled 18 patients with severe Omicron infection, 8 
patients with critically severe Omicron infection, 10 non-
severe individuals (including mild and moderate patients 
with Omicron infection), 6 who succumbed to Omicron 
infection, and 17 healthy controls at Peking Union Medi-
cal College Hospital during the Omicron outbreak in 
China from January, 2023 to March, 2023 in this investi-
gation. Twelve severe and critically severe patients were 
tracked from admission to the hospital until they were 
discharged or died. Laboratory findings including lym-
phocytes, hsCRP, D-Dimer, and ferritin were retrieved 
from medical records. The study was conducted in 
accordance with the Declaration of Helsinki (as revised 
in 2013), was approved by the Institutional Review 
Committee of Peking Union Medical College Hospital 
(approval number: I-23PJ292). Written informed consent 
was obtained from all participants. All whole blood and 
plasma samples taken from patients and controls were 
immediately frozen at − 20 °C.

RT-PCR
Total RNA was isolated from whole blood samples using 
Ex-DNA Whole Blood Genome (3.0) following the manu-
facturer’s instructions (Tianlong Technology, Co., Ltd) on 
NP968 Nucleic Acid Extraction System (Tianlong Tech-
nology, Co., Ltd). The RNA samples were preprocessed 
with gDNA plus remover mix to eliminate genomic DNA 
contamination and then reverse transcribed to cDNA 
using M5 RT Super plus Mix. HiPerSYBR Premix Estaq 
(Mei5 Biotechnology, Co., Ltd) was used to perform real-
time PCR on an Applied Biosystems 7500 Real-Time 
PCR System, and the relative expression of the genes was 
evaluated using the 2 − ΔΔCt method after normalization 
with endogenous GAPDH mRNA expression. Three rep-
licate wells were set for each sample. Table 1 outlines the 
primer sequences for the 12 ISGs.

ELISA
Anti-ISG15 antibody levels in plasma were examined 
using ELISA. The 96-well immunoplate (Corning) was 
coated with 25 ng/well of ISG15 (Cusabio) overnight, and 
then the protocol was followed as previously described 
[27]. Briefly, coated plates were blocked with 2% BSA at 
37℃ for 2  h. After washing, plasma diluted in 2% BSA 
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(1:200) was added and incubated at 37℃ for 2  h. The 
plate was then washed and incubated with horseradish 
peroxidase-conjugated anti-human IgG antibody (1:10 
000) (ZSGB-BIO) at 37℃ for 1 h; Tetramethylbenzidine 
(TMB) was added after washes. ISG15 blocking experi-
ment was performed to verify the specificity; Plasma 
was preincubated with ISG15 at different concentrations 
(1 ng/µL and 5ng/µL) overnight, and then detected by 
ELISA. Two replicate wells were set for each sample.

Statistical analysis
Data were analyzed by using GraphPad Prism 9.5 soft-
ware (San Diego, CA, USA) and the online BioLad-
der tool (bioladder.cn) [28]. Independent sample t- test 
and one-way ANOVA was used to compare differences 
between two groups or among three or more groups with 
normal distribution. For data with non- normal distribu-
tion, non- parametric tests were applied. P < 0.05 denoted 
statistical significance.

Results
Study design and baseline characteristics
Figure  1 depicts the study design. Table  2 outlines the 
demographics and clinical characteristics of the partici-
pants in our study. We examined 36 participants, includ-
ing 10 mild and moderated patients, 18 severe patients, 
and 8 critically severe patients. Five severe patients and 
1 critically severe patient succumbed to Omicron infec-
tion. The mean age of patients was 71.47 years. Males 
comprised 26 of 36 cases. Thirty patients had underly-
ing diseases, including but not limited to hypertension 
and diabetes mellitus. Seven patients were immunocom-
promised. Twenty-one patients had complications. Ten 
patients with known vaccination histories were unvacci-
nated. Sixteen patients underwent the intensive care unit 
(ICU) during hospitalization.

Table 1 Primer sequences for real-time PCR
Gene Forward primer Reverse primer
IFI6 TGCTACCTGCTGCTCTTCAC CGAGCTCTCCGAGCACTTTT
GBP5 TCTGGCCTCCGCTGCATACAA CCCCACTGCTGATGGCATTGA
IFI44L TTGTGTGACACTATGGGGCTA GAATGCTCAGGTGTAATTG-

GTTT
MX1 CACAAAGCCTGGCAGCTCTCTA GGCTGTTTACCAGACTC-

CGACA
IFITM3 CTGTCCAAACCTTCTTCTCTCC GTAGGCGAATGCTATGAAGCC
IFIT2 GGAGAGCAATCTGCGACAG GCTGCCTCATTTAGACCTCTG
OAS1 CATCCGCCTAGTCAAGCACTG CCACCACCCAAGTTTCCT-

GTAG
IFIT1 AGAAGCAGGCAATCACAGAAAA CTGAAACCGACCATAGTG-

GAAAT
RSAD2 ACATTCCTCTTTGGGGAAAG AAAGCCCAAGGACACTGTTT
ISG15 TCTCAGAGGAGCCTGGCTAA AGCATCTTCACCGTCAGGTC
IFITM1 CAGCAGTTTATACCCACACACC GCACGTGCACTTTATTGAAT
SIGLEC1 CTAGTAGTCAGTTGGGAGT AGCCAGAACAGCCTTTACT
GAPDH CCTCAAGATCATCAGCAAT CCATCCACAGTCTTCTGGGT

Fig. 1 Study design
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Clinical characteristics in patients infected with Omicron 
variant
Patients with COVID-19 frequently have overreactive 
inflammatory responses; thus, we investigated several 
clinical parameters to reflect their basic immune status 
(Fig.  2A-H). Our assessment revealed that peripheral 
lymphocytes were significantly lower in severe and criti-
cally severe patients compared with mild and moderate 
patients, indicating that fewer lymphocytes correlate 
with increased severity of Omicron infection (p < 0.05, 
Fig.  2A), which also reflected the reliability of our data. 
Furthermore, the more severe group exhibited an 
increasing tendency of inflammation parameters, includ-
ing hsCRP, D-Dimer, and ferritin (p > 0.05, Fig.  2B-D). 
Patients with poor prognosis had decreased lymphocytes 
and a higher inflammation state (p > 0.05, Fig. 2E-H).

Expression of ISGs in whole blood of patients with different 
severity of Omicron infection
While previous research focused on consistent ISG 
expression to evaluate host resistance to SARS-CoV-2, 
different ISGs may work on viral infection by mediating 
different pathways. In this view, we focused on 12 ISGs 
(including IFI6, GBP5, IFI44L, MX1, IFITM3, IFIT2, 

Table 2 Demographics and clinical characteristics of COVID-19 
patients and controls in the current study
Characteristics Healthy 

Control
COVID-19
Mild and 
Moderate

Severe Criti-
cally 
Severe

Total

Number 17 10 18 8 36
Age
(median, range)

62.29 
(52,76)

68.00 
(14,88)

75.83 
(54,95)

66.00 
(51,77)

71.47 
(14,95)

Gender (male, %) 47.06% 70% 66.67% 87.5% 72.22%
With underlying 
diseases

0 7/10 15/18 8/8 30/36

Immunosuppres-
sion status

0 2/10 1/18 4/8 7/36

Complications 0 2/10 13/18 6/8 21/36
Vaccination (Unvac-
cinated/known 
vaccination)

--- 1/3 5/11 4/7 10/21

Steroids 0 6/10 17/18 8/8 31/36
Mechanical 
ventilation

0 3/10 17/18 8/8 28/36

ICU 0 0 8/18 8/8 16/26
Death 0 0 5/18 1/8 6/26
Abbreviations: ICU Intensive Care Unit

Fig. 2 The comparison of lymphocytes, hsCRP, D-Dimer, and ferritin in the peripheral blood among cases with different severity of Omicron infection 
(mild and moderate, severe, and critically severe patients, A-D) and between the survival group and mortality group (E-H). P-values were determined by 
Kruskal-Wallis test (A-D) and Mann-Whitney test (E-H). All comparisons unreported had p-values greater than 0.05. M/M: mild and moderate
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OAS1, IFIT1, RSAD2, ISG15, IFITM1, and SIGLEC1) 
and examined their expressions in whole blood from 36 
patients infected with Omicron variants and 17 healthy 
controls (Fig. 3A-L).

Our findings revealed that 7 of 12 ISGs were signifi-
cantly differentially expressed in patients, with 4 ISGs 

(IFI6, IFI44L, IFITM1, MX1) downregulated (p < 0.05, 
Fig.  3A-D) and 2 ISGs (SIGLEC1, and IFIT2) upregu-
lated (p < 0.05, Fig. 3G, H) in severe and critically severe 
groups compared with healthy controls. ISG15 expres-
sion was significantly higher in mild, moderate, and 
severe groups than in healthy controls (p < 0.05, Fig. 3F). 

Fig. 3 The comparison of ISG mRNA expression in the peripheral blood among cases with different severity of Omicron infection (mild and moderate, 
severe, and critically severe patients) and healthy controls. P-values were determined by Kruskal-Wallis test. All comparisons unreported had p-values 
greater than 0.05. HC: healthy control

 



Page 6 of 11Li et al. Virology Journal           (2025) 22:89 

Additionally, we discovered that several ISGs varied in 
relation to the severity of patients. Lower levels of IFI6, 
IFI44L, and IFITM1, and MX1 were linked to increased 
severity (p < 0.05, Fig.  3A-D). OAS1 was significantly 
lower in severe patients compared with mild and moder-
ate patients (p < 0.05, Fig. 3E).

Expression of ISGs in whole blood of patients with different 
outcomes of Omicron infection
Based on the varied expression of ISGs observed in 
patients with different severity of Omicron infection, we 
hypothesized whether ISGs were associated with prog-
nosis. As a result, we compared the expression of ISGs 
in patients with outcomes of survival or death (Fig. 4A-
L). The results demonstrated varied expression of ISGs 
between patients who survived and those who suc-
cumbed to Omicron infection: higher levels of ISG15 and 
IFIT1 were linked to poor prognosis (p < 0.05, Fig. 4A, B).

Dynamic expressions of ISGs in whole blood from patients 
infected with Omicron variant
Because the expression of ISGs was associated with the 
severity and outcome of patients infected with Omicron 
variant, we investigated whether the ISGs variated dur-
ing disease progression. We measured the levels of 4 
ISGs with the highest significance of expression in the 
whole blood from our follow-up cohort. We followed 
up on 12 severe and critically ill patients infected with 
Omicron variant and evaluated their ISG expressions; 
2 succumbed to Omicron infection (Fig.  5A-H). Three 
timepoints were selected for analysis to reflect their 
dynamic and consistent variation. Timepoint 1 was the 
first sample collection time 24  h following their admis-
sion. Timepoint 2 was an intermediate point in the dis-
ease process. Timepoint 3 was the final sample collection 
time before the patients were discharged or died. Table 3 
outlines detailed time for the three timepoints. IFI6, 
IFITM1, and ISG15 were discovered to have significant 
dynamic variation during the entire phase of Omicron 
infection (Fig. 5). IFI6 levels continued to rise in surviving 
patients as symptoms improved until the patient was dis-
charged from the hospital (Fig. 5A). IFITM1 and ISG15 
levels decreased continually in disease remission patients 
(Fig. 5C, E). In addition, their variation was detected in 2 
deceased patients following their admission to the hospi-
tal (Fig. 5B, D, F, H). Compared with surviving patients, 
IFI6 did not increase in decreased patients, suggest-
ing that an unsuccessfully increasing of IFI6 potentially 
relates to the outcome of death (Fig. 5B).

Anti-ISG15 autoantibody detection
After observing that ISG15 levels were higher in patients 
with more severity and poor outcome, we hypothesized 
whether the existence of autoantibodies could neutralize 

the antiviral role of ISG15 against Omicron variant. In 
this view, we detected anti-ISG15 in plasma collected 
from 36 patients infected with Omicron variant. The 
results showed an increasing tendency of anti-ISG15 
autoantibodies in the death group compared to the sur-
vival group (Fig. 6).

Discussion
Our study emphasizes the host antiviral signature medi-
ated by ISGs in patients infected with Omicron variant 
during the Omicron wave, both cross-sectionally and 
longitudinally. Decreased lymphocyte levels and higher 
inflammation status were observed in patients with poor 
prognosis, consistent with previous findings [29–31]. The 
expression of several ISGs, including IFI6 and ISG15, was 
revealed to be potentially associated with the severity or 
outcome of Omicron infection. In addition, we discov-
ered a dynamic variant of IFI6 that could be related to the 
prognosis of Omicron.

IFN alpha-inducible protein 6 (IFI6) is an IFN-stim-
ulated gene that belongs to the FAM14 protein family 
and is localized in mitochondria, playing a crucial role 
in immune regulation, stabilizing mitochondrial func-
tion and blocking apoptosis [32]. Previous research found 
that knocking- down or knocking- out IFI6 increased the 
expression of IFN, ISG, and pro-inflammatory cytokines 
after SARS-CoV-2 infections and decreased the produc-
tion of infectious SARS-CoV-2, highly likely owing to its 
roles in inhibiting inflammation and modulating anti-
viral responses [33]. Cytokine storm and a lack of IFN 
responses against SARS-CoV-2 early in infection have 
been supposed to be critical factors linked to the rapid 
death of COVID-19 patients [34]. Our findings demon-
strated that IFI6 levels were significantly lower in severe 
and critically severe patients infected with Omicron vari-
ant; while IFI6 levels continued to rise in some subjects 
who eventually survived as the symptoms improved and 
they were discharged from the hospital. Similar obser-
vations were not true for 2 dead patients. The increas-
ing tendency of inflammation and decreasing tendency 
of IFI6 were reported concurrently as disease severity 
increased, perhaps supporting the role of IFI6 in inhib-
iting inflammation. We hypothesize that subjects with 
lower IFI6 levels are more likely to develop into more 
severe patients after Omicron infection and have a poor 
prognosis due to their inability to suppress excessive 
immune responses induced by Omicron variant.

IFN-stimulated gene 15 (ISG15) encodes a ubiqui-
tin-like protein, mediates ISGylation of various pro-
teins, competes with ubiquitin for ubiquitin-binding 
sites, and regulates protein degradation [35]. ISG15 is 
thought to play crucial antiviral roles during infection 
for a broad range of viruses, potentially via ISGylation 
of viral and host protein, and functions extracellularly 
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and intracellularly, diversely and pathogen-dependently, 
as one of the most strongly and rapidly induced ISGs 
during pathogen invasion [35]. In addition, ISG15 may 
dysregulate IFN-α/β immunity by inhibiting the ubiq-
uitination and degradation of USP18, a negative regula-
tor, and boosting its stability and function [36]. In our 

study, ISG15 was significantly higher in mild, moderate, 
and severe patients infected with Omicron variant and 
in patients with poor prognosis compared with survi-
vors. Patients with increased ISG15 mRNA have more 
severity or poor prognosis probably because ISG15 pro-
tein cannot adequately exert anti-inflammation effects 

Fig. 4 The comparison of ISG mRNA expression in the peripheral blood among cases with different outcomes of Omicron infection (survival and dead 
patients) and healthy controls. P-values were determined by Kruskal-Wallis test. All comparisons unreported had p-values greater than 0.05
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due to immune-evasion strategies or autoimmune sta-
tus. SARS-CoV-2 may evade host antiviral immune 
response by releasing SARS-CoV-2 papain-like cyste-
ine protease (PLpro) to combine ISG15 and inhibit its 

antiviral and anti-inflammatory functions; a preclinical 
drug, GRL0617, can block the binding of ISG15 C-ter-
minus to PLpro and act as a hot spot for antiviral drug 
[37, 38]. There is no current research on autoantibodies 

Fig. 5 Dynamic variation of IFI6, IFITM1, ISG15, and SIGLEC1 mRNA expression across three sampling timepoints in patients who survived or died during 
the entire phase of Omicron infection. The x-axis shows the three timepoints. The y-axis represents 2^-△△Ct. T, timepoint
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against ISG encoded proteins such as anti-ISG15 in 
COVID-19. In this study, we found an increasing ten-
dency of anti-ISG15 autoantibody levels in death group 
compared to survival group, necessitating further 
research to validate the potentially neutralizing role of 
anti-ISG15 against the anti-viral role of ISG15.

Sialic acid-binding immunoglobulin-like lectin 1 
(SIGLEC1) encodes CD169, a surface adhesion molecule 
on human myeloid cells with fundamental implications 
for innate and adaptive immunity [39]. SIGLEC1 has 
been identified as an attachment receptor by increas-
ing angiotensin-converting enzyme 2-mediated infec-
tion and regulating the neutralizing activity of different 
spike-specific antibodies [40]. It is also a central mol-
ecule in SARS-CoV-2 uptake via sialic acid recogni-
tion, and its presence on APCs harboring SARS-CoV-2 

mediates trans-infection in vivo [41]. Therefore, the 
increased expression of SIGLEC1 in severe and criti-
cally severe groups in our study may reflect their involve-
ment in Omicron variant invasion and the active status of 
infection.

Moreover, we noted the differences in the expression 
of other ISGs between groups. 2’-5’-oligoadenylate syn-
thetase 1 (OAS1) is thought to activate RNase L to block 
SARS-CoV-2 replication, with a protective function for 
OAS1 in COVID-19 adverse outcomes [15, 42, 43]. OAS1 
was significantly lower in severe patients than in mild and 
moderate patients, consistent with previous findings [15, 
42, 43]. IFN-induced protein 44-like (IFI44L) is a negative 
feedback regulator of IFN responses induced following 
infection with different viruses [44]. IFN-induced trans-
membrane protein 1 (IFITM1) is an active member of the 
IFITM family, consisting of restriction factors that block 
the entry of several viruses and inhibit S-mediated fusion 
and SARS-CoV-2 infections [45, 46]. MX1 encodes a gua-
nosine triphosphate metabolizing protein involved in the 
cellular antiviral response and has been shown to play a 
crucial role in defining less severe types [47, 48]. In the 
present investigation, we found significantly decreased 
expressions of IFI44L, IFITM1, and MX1 in severe and 
critically severe patients, which might be associated with 
disease severity. These results suggest that a poor ability 
to fight inflammation and virus in the host could contrib-
ute to increased severity of Omicron infection.

Our study has some limitations. First, our findings 
might be impacted by several factors, including age, 
gender, underlying diseases, immunosuppression status, 
and therapies, which are unavoidable in severe and criti-
cally severe infected patients. Then, the study population 
was relatively small because of the limited availability 
of patients with severe and fatal Omicron infection and 
that few mild and moderate patients admitted to the hos-
pital during the omicron wave. Further validation based 
on ISG encoded proteins were crucial to identify our 
findings.

Conclusions
Decreased expression of several ISGs such as IFI6 are 
potentially linked to increased severity or poor outcomes 
of Omicron infection. Longitudinal data also demon-
strates that the dynamic variation of IFI6 in the Omicron 
infection phase may be linked to the prognosis of the dis-
ease. The increase of anti-ISG15 autoantibody potentially 
links to the disease progression and poor outcome of 
patients with high level of ISG15 expression. Our findings 
filled the research gaps in anti-ISG15 autoantibodies in 
patients infected with Omicron variant. These data shed 
light on a proposed mechanism for viral infection such as 
COVID-19 and prospective diagnostic and disease activ-
ity evaluating biomarkers and viable therapeutic targets. 

Table 3 Median (range) time (day) of three times of sampling 
since hospitalization from cases with different outcomes of 
Omicron infection
Patients Timepoint1 Timepoint2 Timepoint3 Outcome
Survival (N = 10) 1 (1, 2) 20 (5, 56) 33 (4, 120) 37 (6, 130)
Dead (N = 2) 0 (0, 0) 17 (15, 19) 37 (31, 42) 39 (31, 46)

Fig. 6 The comparison of anti-ISG15 autoantibody in the plasma in cases 
with different outcome of Omicron infection. P-value was determined by 
Kruskal-Wallis test (p > 0.05)
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Further research on ISGs in COVID-19 or other viral 
infections is necessary.
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