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Abstract 

Objective This study aims to develop a dynamic nomogram model using machine learning to improve short-term 
prognosis prediction and identify patients who would benefit from intravenous immunoglobulin (IVIG) therapy.

Methods A multicenter retrospective study was conducted on 396 patients diagnosed with SFTS. Univariate 
and multivariate Cox regression analyses identified significant predictors of mortality. Machine learning models, 
including Random Survival Forest, Stepwise Cox Modeling, and Lasso Cox Regression, were compared for their 
predictive performance. The optimal model, incorporating consciousness, LDH, AST, and age, was used to construct 
a dynamic nomogram. The nomogram’s performance was validated in training, validation, and external test sets. Addi-
tionally, the impact of IVIG therapy on survival was assessed within high-risk groups identified by the nomogram.

Results The dynamic nomogram demonstrated excellent predictive performance with an AUC of 0.903 in the train-
ing set, 0.933 in the validation set, and 0.852 in the test set, outperforming SOFA and APACHE II scores. Calibration 
curves confirmed the model’s accuracy. In the high-risk group, the hazard ratio (HR) for death for those who injected 
immunoglobulin versus those who did not was 0.569 (95% CI 0.330–0.982) in the nomogram model.

Conclusion The dynamic nomogram effectively predicts short-term prognosis and identifies the population 
that benefits from IVIG therapy in patients with novel bunyavirus sepsis. This tool can aid clinicians in risk stratification 
and personalized treatment decisions, potentially improving patient outcomes.
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Introduction
Severe fever with thrombocytopenia syndrome (SFTS) 
is an emerging infectious disease caused by a novel Bun-
yavirus. It is characterized by fever, low peripheral blood 
leukocyte and platelet counts, and multi-organ failure [1]. 
This disease, also known as novel bunyavirus sepsis, has a 
mortality rate of 20–30% and poses significant challenges 
in clinical management [2].

From a critical care perspective, sepsis—defined 
as organ dysfunction caused by a dysregulated host 
response to infection—provides a useful framework for 
understanding the severe illness caused by this virus [3, 
4]. In clinical practice, predictive models are essential 
tools for stratifying patients based on their risk of adverse 
outcomes. These models facilitate better treatment 
decisions, more effective surveillance, and improved 
implementation of risk reduction strategies. Traditional 
scoring systems, such as the Sequential Organ Fail-
ure Assessment (SOFA) and the Acute Physiology and 
Chronic Health Evaluation II (APACHE II), have been 
widely used for prognostic prediction and stratification 
in critically ill patients [5–7]. However, these systems 
have notable limitations. The SOFA score, while simple 
and broadly applicable, may no longer be as effective in 
the context of modern clinical practice. The APACHE II 
score, which assesses mortality risk based on data col-
lected at admission or during the first 24  h in the ICU, 
is not suitable for rapid assessment due to the extensive 
clinical data required [8–11].

Moreover, recent advancements in machine learning 
offer new opportunities for developing more accurate 
and personalized predictive models [12, 13]. Machine 
learning techniques, such as Random Survival Forests 
and Lasso regression, have been shown to improve pre-
dictive performance and enable personalized predic-
tions in various clinical settings [14, 15]. These methods 
have been applied to cardiovascular system diseases and 
sepsis prognosis, but their use in novel bunyavirus sep-
sis remains limited. Previous studies have explored the 
application of machine learning in predicting the prog-
nosis of SFTS, but they often focused on epidemiologi-
cal aspects and lacked a comprehensive, clinically useful 
scoring system [16–18].

Another critical aspect of managing SFTS is the iden-
tification of effective treatments. Currently, there is no 
specific antiviral therapy for SFTS. Intravenous immu-
noglobulin (IVIG) has garnered attention for its immu-
nomodulatory effects, with some studies suggesting 
potential benefits in treating SFTS [19]. However, the 
populations that may benefit most from IVIG therapy 
remain poorly defined.

Given these gaps in knowledge and clinical practice, the 
aim of this study was to develop and validate a dynamic 

nomogram model to predict the short-term prognosis of 
patients with novel bunyavirus sepsis. We compared the 
effectiveness of various machine learning models and 
traditional scoring systems (SOFA and APACHE II) to 
identify the optimal approach. Additionally, we sought 
to identify patient populations that would benefit most 
from IVIG therapy, thereby informing clinical decision-
making and potentially improving patient outcomes.

Methods
Study population
A total of 302 patients admitted to Nanjing Second 
Hospital between June 2016 and September 2023 and 
104 patients from The First Affiliated Hospital of Wan-
nan Medical College in 2023 were included in this study. 
Their clinical and laboratory data at admission were ret-
rospectively analyzed. Patients with other virus infec-
tions or serious chronic diseases were excluded. SFTS 
patients were diagnosed based on the presence of acute 
fever (with a temperature of 38  °C or higher) and plate-
let count < 100 × 10⁹/L), with lab-confirmed SFTS virus 
(SFTSV) infection by qRT-PCR. The study protocol was 
approved by the ethics committee of The Second Hospi-
tal of Nanjing. We randomized the study population into 
a train set and a validation set (7:3), 104 patients from 
The First Affiliated Hospital of Wannan Medical College 
as an external test set. Their demographics and treat-
ments were balanced between the two sets. The deriva-
tion set were divided into survival and death groups.

Data collection
In this retrospective study, the clinical and laboratory 
(blood routine, biochemistry, coagulation) data of the 
406 patients diagnosed with SFTS on admission were 
collected from the Second Hospital of Nanjing and The 
First Affiliated Hospital of Wannan Medical College Case 
Data System. Patients from The Second Hospital of Nan-
jing were used as Unit1 group with a total of 292 cases as 
the model training and validation set, and patients from 
The First Affiliated Hospital of Wannan Medical College 
were used as Unit2 group with a total of 104 cases as the 
external test set. The patients were categorized into sur-
vival and death groups. (Fig.  1) Data on demographics, 
clinical symptoms, laboratory tests, and treatments were 
collected. APACHEII score and SOFA score were calcu-
lated during the first 24  h after admission to the inten-
sive care unit. The primary outcome was death from all 
causes during hospitalization.

Construction of the dynamic nomogram
To develop a robust predictive model for short-term 
prognosis in patients with novel bunyavirus sepsis, 
we employed several statistical and machine learning 
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techniques. These methods were chosen based on their 
unique advantages in handling complex datasets and 
identifying significant predictors of mortality:

1. Univariate and Multivariate Cox Regression Analy-
ses: These traditional survival analysis methods were 
used to identify significant predictors of mortality. 
They provide interpretable results and allow for the 
assessment of the proportional hazards assumption, 
which is crucial for survival data.

2. Stepwise Cox Modeling: This method iteratively 
selects variables based on statistical significance, 
balancing model complexity and predictive power. 
It helps in identifying the most relevant predictors 
while avoiding overfitting.

3. Lasso Cox Regression: Lasso regression is particu-
larly useful for datasets with many correlated vari-
ables. It performs variable selection by shrinking less 

important coefficients to zero, resulting in a more 
parsimonious model. This method is advantageous 
for handling multicollinearity and improving model 
interpretability.

4. Random Survival Forest: This machine learning 
technique is robust to non-linear relationships and 
interactions between variables. It can handle large 
datasets and complex interactions without requiring 
strict assumptions about the underlying data distri-
bution.

By comparing these methods, we aimed to select the 
optimal model that best balances predictive accuracy and 
clinical interpretability. The final dynamic nomogram 
was constructed using the most significant predictors 
identified through these analyses.

Firstly, In the training sets, patients in the death and 
survival groups were compared at baseline, One-way 

406 patients screened for eligibility

10 excluded

9 Data missing

1 Died within one day of 

admission

396 patients screened for eligibility

292 (2016-2023, The Second Hospital of Nanjing)

104 (2023, The First Affiliated Hospital of Wannan Medical 

College)

204 assigned to the 

development cohort (for 

model development)

88 assigned to the 

validation cohort (for 

model validation)

104 assigned to the test

cohort (for model 

validation)

Fig. 1 Study flow chart
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Table 1 Demographic and clinical characteristics of patients

Unit1 N = 292 (Train + Validation) Unit2 N = 104 (Test) P

Mort 1.000

 No 220 (75.3%) 78 (75.0%)

 Yes 72 (24.7%) 26 (25.0%)

Day 10.0 (6.00,14.0) 7.00 (4.00,11.0)  < 0.001*
Sex 0.656

 Female 162 (55.5%) 61 (58.7%)

 Male 130 (44.5%) 43 (41.3%)

Age(years) 68.0 (58.0,72.0) 67.5 (60.0,73.0) 0.582

Underlying_diseases 0.009*
 No 152 (52.1%) 38 (36.5%)

 Yes 140 (47.9%) 66 (63.5%)

Consciousness 0.017*
 No 201 (68.8%) 85 (81.7%)

 Yes 91 (31.2%) 19 (18.3%)

APAHEII 13.0 (9.00,18.0) 15.5 (13.0,20.0)  < 0.001*
SOFA 3.00 (2.00,5.00) 5.00 (3.00,7.25)  < 0.001*
Viral load(106copies/ml) 1.80 (0.07,16.0) NA –

IgM

 No 92 (31.5%) 0 (%)

 Yes 200 (68.5%) 0 (%)

IgG

 No 278 (95.2%) 0 (%)

 Yes 14 (4.79%) 0 (%)

T (℃) 38.0 (36.8,38.7) 38.5 (38.1,38.9)  < 0.001*
HRate (Times/min) 84.5 (74.0,94.0) 83.0 (78.0,91.2) 0.533

MAP (mmHg) 83.0 (75.0,91.0) 89.0 (82.8,97.2)  < 0.001*
Vasopressors  < 0.001*
 No 272 (93.2%) 81 (77.9%)

 Yes 20 (6.85%) 23 (22.1%)

Ribavirin  < 0.001*
 No 50 (17.1%) 66 (64.1%)

 Yes 242 (82.9%) 37 (35.9%)

Favrovir  < 0.001*
 No 255 (87.3%) 104 (100%)

 Yes 37 (12.7%) 0 (0.00%)

IVIG  < 0.001*
 No 118 (40.4%) 64 (61.5%)

 Yes 174 (59.6%) 40 (38.5%)

Hormone  < 0.001*
 No 186 (63.7%) 29 (28.2%)

 Yes 106 (36.3%) 74 (71.8%)

Antifungal  < 0.001*
 No 175 (59.9%) 100 (97.1%)

 Yes 117 (40.1%) 3 (2.91%)

Antibacterial 0.929

 No 48 (16.4%) 18 (17.5%)

 Yes 244 (83.6%) 85 (82.5%)

MV 0.425

 No 244 (83.6%) 91 (87.5%)
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COX regression analysis was performed for each factor 
included, and variables that were statistically significant 
(P < 0.05) or clinically valuable according to professional 
judgment were included in stepwise COX regression 
analysis, lasso regression analysis, and Random Forest 
Survival Analysis models, whereas multifactorial COX 
regression analysis was performed to screen for inde-
pendent influences. Correlation coefficients were applied 
to assess the covariance between the variables involved 
in the construction of the model. Dynamic nomograms 
based on Occam’s Razor’s Law were obtained in the 
training set and developed into an APP application that 
can be accessed at this URL https:// ykahh. shiny apps. 
io/ DynNo mapp/. The optimal model should be the one 
that achieves the best performance with the fewest or 
most accessible variables [20].Mortality risk stratification 
based on Nomogram scores was performed to facilitate 
clinician assessment of the application.

Validation of the nomogram
The performances of the nomogram, SOFA and APACHE 
II Score were compared in terms of AUC in the training, 
validation sets and test sets. Calibration curves to assess 
the accuracy of model predictions. The C-index and the 
Integration of the Brier Score (IBS) of the Nomogram 

model in the training set, validation set and external test 
set.

Immunoglobulin efficacy analysis
Clinical survival outcomes were assessed by the Kaplan–
Meier analysis and prognostic groups were compared by 
the log-rank test. Hazard Ratio (Hazard Ratio) to assess 
the proportion of risk of death in the treated vs. non-
treated group.

Statistical analysis
Statistical analyses were performed using the R software 
(version4.3.1 R Foundation for Statistical Computing, 
Vienna, Austria). In the univariate analysis, categori-
cal data were analyzed by  x2 test. Continuous data in a 
normal distribution were analyzed by independent t test 
and presented as X  ± s. Continuous data in a non-normal 
distribution were analyzed by the Mann Whitney test 
and their medians were compared (P25, P75). Pearson’s 
chi-square test and Fisher’s exact test were used where 
appropriate when comparing differences in proportions 
between groups.

Missing values were addressed with multiple impu-
tation in the process of logistic regression and model 
construction with five interpolations. The imputation 

Table 1 (continued)

Unit1 N = 292 (Train + Validation) Unit2 N = 104 (Test) P

 Yes 48 (16.4%) 13 (12.5%)

HFNC 0.005*

 No 280 (95.9%) 91 (87.5%)

 Yes 12 (4.11%) 13 (12.5%)

CRRT 0.109

 No 243 (83.2%) 94 (90.4%)

 Yes 49 (16.8%) 10 (9.62%)

WBC  (109/L) 3.20 (2.00,5.27) 2.65 (1.70,5.03) 0.084

ANC  (109/L) 2.23 (1.10,4.08) 1.60 (1.00,3.00) 0.030*
ALC  (109/L) 0.62 (0.41,1.08) 0.70 (0.40,1.12) 0.147

PLT  (109/L) 48.5 (33.0,66.0) 39.5 (27.8,63.0) 0.017*
CRP (pg/mL) 1.00 (0.00,6.34) 5.55 (2.28,14.1)  < 0.001*
U (mmol/L) 5.75 (3.88,8.07) 6.19 (4.71,9.27) 0.022*
TBil (mmol/L) 8.00 (5.80,11.0) 10.0 (7.50,13.1)  < 0.001*
ALT (U/L) 56.6 (35.9,92.6) 70.5 (42.2,122) 0.007*
AST (U/L) 131 (75.1,261) 136 (82.8,264) 0.511

ALB (g/dL) 34.9 (32.0,38.0) 30.5 (28.0,34.0)  < 0.001*
LDH (U/L) 598 (378,960) 550 (389,967) 0.938

ALP (U/L) 66.0 (49.0,83.0) 65.0 (49.0,94.2) 0.670

Cr (mmol/L) 75.0 (62.0,92.7) 65.4 (55.0,87.2) 0.008*
D.Dimer 2.17 (0.93,4.82) 2.36 (1.23,5.58) 0.191

PNI 38.6 (35.2,41.8) 2.25 (1.29,4.87)  < 0.001*
* P values compare the patient characteristics and outcome events in the development and validation cohorts using Wilcoxon Mann–Whitney test or exact Fisher test 
depending on whether the variable is continuous or categorical. P < 0.05 was considered significant and labeled with an asterisk (*) at the top corner of the P-value

Bold indicates statistically significant results (p < 0.05)

https://ykahh.shinyapps.io/DynNomapp/
https://ykahh.shinyapps.io/DynNomapp/


Page 6 of 24Yang et al. Virology Journal           (2025) 22:51 

Table 2 linical baseline comparison of patients in the training and validation groups

ALL
N = 292

Train
N = 204

Valation N = 88 P

Mort 0.033*
 No 220 (75.3%) 146 (71.6%) 74 (84.1%)

 Yes 72 (24.7%) 58 (28.4%) 14 (15.9%)

Day 10.0 (6.00, 14.0) 10.0 (5.00, 14.0) 10.0 (7.00, 14.0) 0.243

Sex 0.551

 Female 162 (55.5%) 116 (56.9%) 46 (52.3%)

 Male 130 (44.5%) 88 (43.1%) 42 (47.7%)

Age(years) 68.0 (58.0, 72.0) 68.0 (58.0, 72.0) 68.0 (57.0, 72.2) 0.747

Underlying_diseases 0.738

 No 152 (52.1%) 108 (52.9%) 44 (50.0%)

 Yes 140 (47.9%) 96 (47.1%) 44 (50.0%)

Consciousness 0.596

 No 201 (68.8%) 138 (67.6%) 63 (71.6%)

 Yes 91 (31.2%) 66 (32.4%) 25 (28.4%)

APAHEII 13.0 (9.00, 18.0) 13.0 (9.00, 18.0) 13.0 (9.00, 17.0) 0.888

SOFA 3.00 (2.00, 5.00) 3.00 (2.00, 5.00) 3.00 (2.00, 4.25) 0.506

Viral load(106copies/ml) 1.80 (0.07, 16.0) 2.40 (0.10, 18.0) 0.84 (0.07, 6.40) 0.046*
IgM 0.951

 No 92 (31.5%) 65 (31.9%) 27 (30.7%)

 Yes 200 (68.5%) 139 (68.1%) 61 (69.3%)

IgG 1.000

 No 278 (95.2%) 194 (95.1%) 84 (95.5%)

 Yes 14 (4.79%) 10 (4.90%) 4 (4.55%)

T (℃) 38.0 (36.8, 38.7) 38.1 (36.9, 38.7) 38.0 (36.8, 38.7) 0.329

HRate (Times/min) 84.5 (74.0, 94.0) 86.0 (74.0, 95.0) 81.5 (70.0, 90.0) 0.098

MAP (mmHg) 83.0 (75.0, 91.0) 83.5 (75.0, 92.2) 82.0 (75.8, 91.0) 0.978

Vasopressors 1.000

 No 272 (93.2%) 190 (93.1%) 82 (93.2%)

 Yes 20 (6.85%) 14 (6.86%) 6 (6.82%)

Ribavirin 0.245

 No 50 (17.1%) 31 (15.2%) 19 (21.6%)

 Yes 242 (82.9%) 173 (84.8%) 69 (78.4%)

Favrovir 0.893

 No 255 (87.3%) 179 (87.7%) 76 (86.4%)

 Yes 37 (12.7%) 25 (12.3%) 12 (13.6%)

IVIG 0.783

 No 118 (40.4%) 84 (41.2%) 34 (38.6%)

 Yes 174 (59.6%) 120 (58.8%) 54 (61.4%)

Hormone 0.701

 No 186 (63.7%) 128 (62.7%) 58 (65.9%)

 Yes 106 (36.3%) 76 (37.3%) 30 (34.1%)

Antifungal 0.747

 No 175 (59.9%) 124 (60.8%) 51 (58.0%)

 Yes 117 (40.1%) 80 (39.2%) 37 (42.0%)

Antibacterial 0.296

 No 48 (16.4%) 30 (14.7%) 18 (20.5%)

 Yes 244 (83.6%) 174 (85.3%) 70 (79.5%)

MV 0.499

 No 244 (83.6%) 168 (82.4%) 76 (86.4%)
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technique involves creating multiple viral load of the 
data and replacing missing values with imputed values 
through a suitable random sample from their predicted 
distribution. Independent risk factors were identified 
by three algorithms Cox regression analysis and multi-
variate Cox regression analysis to predict mortality. The 
stepwise Cox regression analysis model introduces and 
excludes variables iteratively using forward selection and 
backward elimination. The LASSO regression analysis 
model applies L1 regularization to penalize regression 
coefficients, thereby performing variable selection and 
coefficient shrinkage, and employs tenfold cross-valida-
tion to determine the optimal penalty parameter, using 
lambda.1se as the best λ value. The random survival Cox 
model constructs the model after optimizing the num-
ber of nodes. Correlation coefficient plots were used for 
multifactor covariance determination. Area under the 
curve of the receiver operating characteristic (AUROC) 
and calibration curves for model performance evaluation. 
Nomogram construction based on optimal modeling. 
The X-tile software (version 3.6.1, Yale School of Medi-
cine) was used for the analysis of optimal cutoff values 
[21]. All statistical tests were two-sided with a statisti-
cal significance level set at P values of < 0.05. The main 

packages R of the study design are gtsummary, tidyverse, 
survminer, randomForestSRC, nomogramFormula, sur-
vex and ggplot2.

Ethics approval
The study was approved by The Second Hospital of Nan-
jing ethics committees (2023-L-S-023).

Results
Patient description
During the study period, 396 patients (Unit1: 292, 
Unit2:104) were diagnosed with SFTS, of whom 98 died 
at a median time of 4  days after admission. The overall 
mortality rate was 24.7% (Table  1), with as many as 79 
deaths within 7 days of admission in the mortality group 
(80.6%). Viral load, IgM and IgG antibodies not measured 
in external test set patients.

Table 2 shows that there was no significant difference 
between the training and validation groups in terms of 
population epidemiologic characteristics and clinical 
treatment strategies. (Table 2).

Table 2 (continued)

ALL
N = 292

Train
N = 204

Valation N = 88 P

 Yes 48 (16.4%) 36 (17.6%) 12 (13.6%)

HFNC 0.521

 No 280 (95.9%) 194 (95.1%) 86 (97.7%)

 Yes 12 (4.11%) 10 (4.90%) 2 (2.27%)

CRRT 0.927

 No 243 (83.2%) 169 (82.8%) 74 (84.1%)

 Yes 49 (16.8%) 35 (17.2%) 14 (15.9%)

WBC  (109/L) 3.20 (2.00, 5.27) 3.09 (1.98, 5.16) 3.50 (2.08, 5.65) 0.476

ANC  (109/L) 2.23 (1.10, 4.08) 2.28 (1.10, 4.18) 1.92 (1.13, 3.96) 0.676

ALC  (109/L) 0.62 (0.41, 1.08) 0.62 (0.41, 1.02) 0.62 (0.43, 1.26) 0.214

PLT  (109/L) 48.5 (33.0, 66.0) 46.0 (32.8, 66.2) 50.0 (34.0, 65.2) 0.687

CRP (pg/mL) 1.00 (0.00, 6.34) 1.00 (0.00, 6.11) 1.17 (0.50, 7.03) 0.442

U (mmol/L) 5.75 (3.88, 8.07) 5.80 (3.99, 8.00) 5.74 (3.67, 8.16) 0.492

TBil (mmol/L) 8.00 (5.80, 11.0) 7.65 (5.80, 10.7) 8.40 (5.30, 12.2) 0.280

ALT (U/L) 56.6 (35.9, 92.6) 57.1 (34.9, 93.9) 54.1 (38.2, 90.6) 0.552

AST (U/L) 131 (75.1, 261) 138 (75.7, 272) 114 (70.9, 243) 0.505

ALB (g/dL) 34.9 (32.0, 38.0) 35.0 (32.0, 38.1) 34.6 (31.7, 37.6) 0.644

LDH (U/L) 598 (378, 960) 600 (372, 1044) 594 (379, 909) 0.571

ALP (U/L) 66.0 (49.0, 83.0) 66.0 (49.0, 84.0) 65.5 (48.8, 80.2) 0.701

Cr (mmol/L) 75.0 (62.0, 92.7) 75.4 (62.0, 91.6) 75.0 (62.8, 94.6) 0.946

D.Dimer 2.17 (0.93, 4.82) 2.17 (0.90, 4.70) 2.09 (0.97, 5.08) 0.905

PNI 38.6 (35.2, 41.8) 38.5 (35.0, 41.4) 38.7 (35.5, 42.3) 0.504
* P values compare the patient characteristics and outcome events in the development and validation cohorts using Wilcoxon Mann–Whitney test or exact Fisher test 
depending on whether the variable is continuous or categorical. P < 0.05 was considered significant and labeled with an asterisk (*) at the top corner of the P-value

Bold indicates statistically significant results (p < 0.05)
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Feature selection and nomogram modeling
Univariate Cox regression analysis showed that advanced 
age, presence of altered consciousness, high level of 
APACHEII score and SOFA score, high viral load, high 
heart rate, application of antihypertensive drugs, need for 
hormonal application, need for anti-bacterial and fungal 
infections, need for renal replacement and respiratory 
therapy and elevated levels of U, TBil, ALT, AST, LDH, 
ALP, Cr, and D. Dimer were the lethal risk factors for 

outcome, and high levels of platelets, human albumin 
and PNI were protective factors. (Table 3) The above var-
iables, in addition to APACHEII and SOFA scores, were 
used for modeling of the three algorithms. Stepwise Cox 
regression analysis model using stepwise forward and 
backward analysis (AIC = 474.78) and multifactorial Cox 
survival analysis (a < 0.05) screened the influencing fac-
tors involved in model construction including conscious-
ness, antifungal, CRRT, U, ALT and D-Dimer, and the 

Table 3 Single-factor cox survival analysis

1 HR = Hazard Ratio, CI = Confidence Interval
* P values compare the patient characteristics and outcome events in the development and validation cohorts using Wilcoxon Mann–Whitney test or exact Fisher test 
depending on whether the variable is continuous or categorical. P < 0.05 was considered significant and labeled with an asterisk (*) at the top corner of the P-value

Bold indicates statistically significant results (p < 0.05)

Characteristic Reference level Event N HR (95% CI)1 P-value

Sex Female 58 1.24 (0.74–2.08) 0.42

Age 58 1.03 (1.01–1.06) 0.016*
underlying_diseases No 58 1.19 (0.71–1.99) 0.52

Consciousness No 58 10.6 (5.62–20.2)  < 0.001*
APAHCEII 58 1.12 (1.08–1.16)  < 0.001*
SOFA 58 1.38 (1.29–1.48)  < 0.001*
Viral load(106copies/ml) 58 1.00 (1.00–1.00) 0.001*
IgM No 58 1.15 (0.65–2.03) 0.62

IgG No 58 1.92 (0.69–5.32) 0.25

T(℃) 58 1.10 (0.87–1.40) 0.43

HRate (Times/min) 58 1.02 (1.01–1.03)  < 0.001*
MAP (mmHg) 58 0.99 (0.97–1.01) 0.44

vasopressors No 58 3.71 (1.92–7.18)  < 0.001*
Ribavirin No 58 1.43 (0.62–3.35) 0.38

Favrovir No 58 1.24 (0.58–2.62) 0.59

IVIG No 58 1.19 (0.69–.05) 0.53

Hormone No 58 2.27 (1.35–3.83) 0.002*
Antifungal No 58 2.03 (1.20–3.45) 0.008*
Antibacterial No 58 3.50 (1.09–11.2) 0.010*
MV No 58 5.81 (3.45–9.80)  < 0.001*
HFNC No 58 1.77 (0.70–4.46) 0.26

CRRT No 58 4.99 (2.96–8.40)  < 0.001*
WBC  (109/L) 58 0.96 (0.89–1.04) 0.29

ANC  (109/L) 58 0.94 (0.86–1.03) 0.18

ALC  (109/L) 58 1.01 (0.59–1.73) 0.97

PLT  (109/L) 58 0.98 (0.96–0.99)  < 0.001*
CRP (pg/mL) 58 1.00 (0.98–1.02) 0.89

U (U/L) 58 1.13 (1.09–1.17)  < 0.001*
TBil (U/L) 58 1.03 (1.01–1.05) 0.031*
ALT (U/L) 58 1.01 (1.00–1.01)  < 0.001*
AST (U/L) 58 1.00 (1.00–1.00)  < 0.001*
ALB (g/dL) 58 0.93 (0.89–0.98) 0.007*
LDH (U/L) 58 1.00 (1.00–1.00)  < 0.001*
ALP (U/L) 58 1.01 (1.01–1.01)  < 0.001*
Cr (mmol/L) 58 1.01 (1.01–1.01)  < 0.001*
D.Dimer 58 1.03 (1.02–1.04)  < 0.001*
PNI 58 0.97 (0.95–1.00) 0.037*
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Lasso Cox regression analysis model selected lambda.1se 
(0.147) as the optimal λ value (Fig. 2A and B), the corre-
sponding influencing factors include consciousness, LDH 
and AST, the optimal number of nodes for stochastic 
survival analysis was 4 (Fig. 2D), and the influencing fac-
tors involved in the model construction were conscious-
ness, ALT, AST and viral load and rank the variables in 
order of importance. (Fig.  2C) According to the clinical 
practice, the factor of age was included in the construc-
tion of the three models mentioned above. Multifacto-
rial Cox analysis showed early altered consciousness was 
independent risk factor for lethal outcome. The heat map 
of correlation coefficients shows that the variables are 
not correlated and the VIF values of the variables are less 
than 5. (Table 4, Fig. 3 Correlation coefficient graph).

Stepwise Cox regression model, lasso Cox regres-
sion model and stochastic survival analysis model based 
on independent influences and Cox hypothesis test-
ing (Fig. 4). The global Schoenfeld tests for the stepwise 
Cox regression model, the lasso Cox regression model, 
and the stochastic survival analysis model were 0.0109, 
0.7729, and 0.04393, respectively. We therefore chose the 
variables included in the the lasso Coxregression model, 
i.e., consciousness, LDH and AST, and added age to con-
struct a 7-day Nomogram model for survival analysis. 
(Fig. 5) Comparison of the importance of age, conscious-
ness, LDH, and AST in the training set, validation set, 
and test set models reveals consciousness as the most 
important indicator (Fig. 6) The five variables mentioned 

Fig. 2 Cox_model_Lasso (A/B) and Cox_model_rfsrc (C/D)

Table 4 Multi-factor Cox regression of three model screening 
outcome variables and VIF values for each factor

1 HR = Hazard Ratio, CI = Confidence Interval, VIF = Variance Inflation Factor
* P values compare the patient characteristics and outcome events in the 
development and validation cohorts using Wilcoxon Mann–Whitney test 
or exact Fisher test depending on whether the variable is continuous or 
categorical. P < 0.05 was considered significant and labeled with an asterisk (*) at 
the top corner of the P-value

Bold indicates statistically significant results (p < 0.05)

Characteristic HR1 95%  CI1 P-value VIF1

Cox_model_Step-
wise

Age 1.02 0.99, 1.05 0.26 1.1

consciousness 6.27 2.92, 13.5  < 0.001* 1.4

Antifungal 0.48 0.25, 0.91 0.025* 1.5

CRRT 2.53 1.34, 4.77 0.004* 1.5

U 1.09 1.04, 1.14 0.001* 1.1

ALT 1.01 1.00, 1.01 0.001* 1.1

D.Dimer 1.02 1.01, 1.03 0.019* 1.1

Cox_model_Lasso

Age 1.03 1.00, 1.05 0.083 1.0

consciousness 6.34 3.23, 12.5  < 0.001* 1.1

AST 1.00 1.00, 1.00 0.51 3.1

LDH 1.00 1.00, 1.00 0.024* 3.2

Cox_model_rfsrc

Age 1.02 0.99, 1.05 0.15 1.0

Viral load 1.00 1.00, 1.00 0.27 1.1

AST 1.00 1.00, 1.00 0.055 2.2

ALT 1.00 1.00, 1.01 0.17 2.1

consciousness 7.03 3.55, 13.9  < 0.001* 1.1
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above were involved in the construction of a dynamic 
predictive model, which was deployed on the website at 
https:// ykahh. shiny apps. io/ DynNo mapp/.

Evaluation and validation of machine learning models
In the Training set, the average Time-AUC values of 
Nomogram model, Cox_model_SOFA and Cox_model_
APACHEII were 0.903, 0.0.83, 0.745 in 7 days; Validation 
set:0.933, 0.824, 0.794; Test set: 0.852, 0.908, and 0.86 
(Fig. 7, see Appendix 1 for specific values).Comparison of 
the AUC size of the Nomogram model with cox_model_
SOFA and cox_model_APACHEII in the Test set showed 
no statistical difference (P > 0.05), respectively (Fig.  8, 
see Appendix 2 for specific values). The C-index of the 
Nomogram model in the training set, validation set and 
external test set are 0.878, 0.883 and 0.821 respectively. 
The Integration of the Brier Score (IBS) of the Nomo-
gram model is 0.089, 0.066 and 0.07 for the training set, 
the validation set and test set, respectively. Calibration 
curves were depicted for both of the training, validation 
sets and test sets, and the calibration plot revealed good 
predictive accuracy between the actual probability and 
predicted probability. (Fig. 9).

Exploring the population benefits of human IVIG
We applied X-title software to explore the cutoff values 
for age, AST, LDH and SOFA scores, which were 63, 
489.9, 1494, and 7, respectively. (Appendix 3) Greater 
than or equal to the cutoff value was considered a 
high-risk group, and vice versa for low-risk group. In 
a cohort of 396 patients, the median follow-up times 
for the high-risk and low-risk groups were 24 days and 
11  days, respectively. The 7-day survival probabilities 
were 24% (95% CI 15–39%) and 88% (95% CI 85–92%) 
for the high-risk and low-risk groups, respectively. 
The median survival time for the high-risk group was 

3 days. The Nomogram prediction model constructed 
from the development cohort was used to classify the 
development cohort, the external test cohort and all 
patients into a low-risk population and a high-risk 
population, respectively, and survival curves were 
plotted and log-rank tests were performed. From the 
results of the analysis, it was known that there was a 
significant difference (P < 0.05) between the survival 
curves of the two populations (Fig.  10). In the total 
population group, in the high and low risk subgroups 
of the Nomogram prediction model and the SOFA pre-
diction model, survival curves were plotted accord-
ing to whether immunoglobulin was applied or not, 
and log-rank tests were performed. From the results 
of the analyses, it was found that there was a signifi-
cant difference (P < 0.05) between the survival curves 
of the high-risk groups only in both models (Fig.  11), 
and hazard ratio (HR) for death for those who injected 
immunoglobulin versus those who did not was 0.569 
(95% CI 0.330–0.982) in the Nomogram prediction 
model (P < 0.05). In the SOFA prediction model, the 
hazard ratio (HR) of death for non-applicants was 
1.938 (95% CI 1.137–3.305) (P < 0.05). Further explor-
ing the significant difference between survival curves 
with and without immunoglobulin application in the 
awareness-only group in the high-risk group according 
to the cutoff values of each variable in the Nomogram 
prediction model (Fig. 12) and the hazard ratio (HR) of 
death for those who did not apply was 1.868 (95% CI 
1.168–2.987) (P < 0.05).

Discussion
In this study, a dynamic Nomogram modle for predict-
ing the short-term prognosis of STFS patients was devel-
oped and deployed on a website for reference application 
by clinicians. After risk stratifying the population, the 

Fig. 3 Correlation coefficient graph

https://ykahh.shinyapps.io/DynNomapp/
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Fig. 4 Shows the results of the Cox hypothesis tests for the three machine learning models, where the P-value of the Lasso Cox regression model 
is greater than 0.05, indicating that it satisfies the Cox proportional hazards assumption
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human immunoglobulin benefit population was further 
explored.

We screened the factors that satisfy the Cox pro-
portional risk assumption (Fig.  4) by applying three 
machine learning methods for the construction of 
Nomogram modle. The heat map of correlation coeffi-
cients shows that the variables are not correlated and 
the VIF values of the variables are less than 5. (Table 4, 
Fig.  3). The final independent risk factors were age, 
awareness, LDH, and AST (Fig. 5), and the importance 
of the above variables the above four factors contrib-
uted to the predictive ability of the model in the order 
of awareness, AST, LDH, and age, and had consistent 
performance in the training set, validation set, and 
external test set (Fig.  6). Studies have also shown that 
CNS manifestations (adjusted odds ratio [OR] 30.26) 
are important risk factors for the fatal outcomes of 
SFTS patients, and have been recognized by the Min-
istry of Health of the People’s Republic of China as an 
important clinical manifestation for identifying criti-
cally ill patients. It has also been recognized by the 
Ministry of Health of the People’s Republic of China 
as an important clinical manifestation for the iden-
tification of critically ill SFTS patients [22, 23]. The 
pathogenic mechanism of encephalitis in patients 
with SFTS is unclear, and studies have shown that 
the virus is able to cross the blood–brain barrier into 
the skull to replicate, thus directly damaging neurons 
in brain tissue [24, 25]. SFTS patients tend to exhibit 

multiple organ damage or failure, and elevated LDH 
and AST are important biomarkers reflecting cell dam-
age, death, and organ failure, and have been shown to 
be closely associated with the severity of virus-related 
diseases and mortality [26–28]. An elder age indicated 
a higher mortality, which may be due to the fact that 
most elderly patients have a combination of underlying 
diseases, an increased risk of severe infections, a low 
organ compensatory capacity, and an impaired immu-
nity [29, 30]. Studies have confirmed that viral load is 
an equally important risk factor for death [31]. How-
ever, this factor did not satisfy the Cox proportional 
risk assumption (Fig.  4C) in the randomized survival 
analysis in this study. In addition, from the perspective 
of clinical practice, considering that some healthcare 
institutions in primary or developing regions may not 
have the ability to test viral load or the measurement 
value is not uniform in different regions, which leads to 
the lack of value of the factor for wide application to a 
certain extent.

The study presents compelling evidence for the supe-
riority of Nomogram model in predicting short-term 
outcomes for Novel Bunyavirus Sepsis compared to 
traditional scoring systems like SOFA and APACHEII. 
This is supported by the higher AUC values (Fig. 7) and 
lower Brier Scores observed in the study, indicating 
enhanced accuracy and reduced deviation from actual 
outcomes. Although the SOFA score had the highest 
Time-AUC in the external test set, further comparisons 

Fig. 5 Shows the 7-day survival prediction nomogram based on the Lasso Cox regression model, which includes the four variables: level 
of consciousness, lactate dehydrogenase, aspartate aminotransferase, and age
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Fig. 6 Compares the importance of the four variables in the prediction model: level of consciousness, aspartate aminotransferase, lactate 
dehydrogenase, and age, where level of consciousness is the most important indicator. Comparison of’ Variable lmportance (the Training Set (A), 
Validation Set (B), and Test Set (C)
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with the Nomogram model and APACHE II scores 
showed no statistically significant differences (Fig.  8). 
Furthermore, the dynamic nature of Nomogram model 
allows for real-time adjustments based on evolving 
patient data, offering a significant advantage over static 
scoring systems. The ability of Nomogram model to 
automatically identify and prioritize influential prog-
nostic factors, as demonstrated in studies by Dong et al. 
[14] and Jiang et  al. [12], facilitates personalized risk 
stratification and treatment planning.

The study found that in the high-risk group identi-
fied by the nomogram (cutoff value of 116.4), patients 
treated with IVIG had a significantly higher survival 
rate than untreated patients, with a risk ratio of 1.756 
(95% CI 1.019–3.028). This suggests that IVIG may have 
an important role in the treatment of SFTS, especially 
in high-risk patients. Some studies have shown IVIG’s 

potential benefits in SFTS include neutralizing the virus, 
modulating the immune response, and regulating the 
complement system [19, 32]. The significance of this 
study is that it provides an important tool for risk strati-
fication and individualized treatment decisions for SFTS 
patients. By identifying high-risk patients and adminis-
tering IVIG therapies, patient prognosis can be improved 
and treatment outcomes enhanced. In addition, Given 
the importance of state of consciousness for prognostic 
prediction and the stability and widespread use of the 
SOFA score for prognostic prediction, this study showed 
that those who developed impaired consciousness or had 
a SOFA score of 7 or more were also immunoglobulin 
beneficiaries, which is consistent with the results of ear-
lier studies of the effectiveness of human immunoglobu-
lin in the treatment of viremia or sepsis [33, 34].

This study demonstrates that the 7-day survival prob-
ability among high-risk patients is only 24%. The dynamic 
column-line diagram model developed in this study pro-
vides an important reference value for prognostic predic-
tion and therapeutic decision-making in patients with 
novel Bunyavirus sepsis. However, the study has some 
limitations. First, the relatively small number of patients, 
especially in the external test set, may limit the model’s 
external validity and generalizability. Second, as a ret-
rospective study, it is prone to informational and selec-
tion biases. Additionally, the study focused on clinical 
bioindicators and may have overlooked other potential 
factors, such as patients’ immune status, genetic back-
grounds, and socioeconomic status. These aspects need 
further refinement and improvement in future studies.
By expanding the sample size, optimizing the selection of 
variables, and adopting prospective studies, the accuracy 
and reliability of the model can be improved so that it can 
be better applied to clinical practice and improve patient 
prognosis.

Dynamic column-line graphical modeling was effective 
in predicting the short-term prognosis of patients with 
novel Bunyavirus sepsis and identifying patient groups 
that could benefit from human immunoglobulin therapy. 
The machine learning model demonstrated higher accu-
racy and reliability in predicting the short-term progno-
sis of patients with novel bunyavirus sepsis compared to 
traditional scoring systems (SOFA, APACHE II). Human 
immunoglobulin therapy is efficacious in high-risk 
patients and significantly improves patient survival.

Fig. 7 Time-AUC (A: Train, B: Validation, C: Test)
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Fig. 8 Comparison of the AUC size of the Nomogram modelwith cox model SOFA (A) and cox model APACHEII (B) in the Test set (P > 0.05)
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Fig. 9 Calibration curves (A: Train set, B: Validation set, C: Test set)
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Fig. l0 Survival curves by risk group Overall survial curves for the Train set (A), Test set (B) and Complete set (C) by cutoff point
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Fig. 11 Suryival curves by immunoglobulin groups Overall surivival curves for Nomonpram modle (A) and SOFA modle (B)

Fig. 12 Survival curves by immunoglobulin groups Overall surivival curves for each variable of Nomongram modle (A: age, B: consciousness, C: 
AST, D: LDH)
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Appendix 1

Model Times AUC se Lower Upper

1 Nomogram 1 0.875 0.04604767 0.7847482 0.9652518

2 Nomogram 2 0.8794643 0.03968527 0.8016826 0.957246

3 Nomogram 3 0.8697275 0.07037675 0.7317916 1

4 Nomogram 4 0.8673917 0.05559553 0.7584265 0.9763569

5 Nomogram 5 0.820086 0.06730968 0.6881615 0.9520106

6 Nomogram 6 0.8313215 0.0617311 0.7103307 0.9523122

7 Nomogram 7 0.8192192 0.06404957 0.6936844 0.9447541

8 SOFA 1 0.95375 0.03379834 0.8875065 1

9 SOFA 2 0.9278274 0.03023919 0.8685597 0.9870951

10 SOFA 3 0.9146571 0.03521436 0.8456382 0.983676

11 SOFA 4 0.9159971 0.04636838 0.8251167 1

12 SOFA 5 0.8775346 0.05635113 0.7670884 0.9879807

13 SOFA 6 0.8874747 0.05324462 0.7831171 0.9918322

14 SOFA 7 0.8795861 0.05520026 0.7713956 0.9877766

15 APACHEII 1 0.95 0.02746136 0.8961767 1

16 APACHEII 2 0.827381 0.07186861 0.6865211 0.9682408

17 APACHEII 3 0.8567439 0.05170202 0.7554099 0.958078

18 APACHEII 4 0.8753759 0.043317 0.7904761 0.9602756

19 APACHEII 5 0.8267672 0.05871053 0.7116967 0.9418377

20 APACHEII 6 0.8452463 0.05454121 0.7383475 0.9521451

21 APACHEII 7 0.8409632 0.05551288 0.73216 0.9497665

Model Times AUC se Lower Upper

1 Nomogram 1 0.8737179 0.02862183 0.8176202 0.9298157

2 Nomogram 2 0.9089434 0.02457669 0.860774 0.9571129

3 Nomogram 3 0.9185626 0.02123215 0.8769483 0.9601768

4 Nomogram 4 0.9186333 0.02099024 0.8774932 0.9597734

5 Nomogram 5 0.9065475 0.02472241 0.8580925 0.9550025

6 Nomogram 6 0.9094313 0.02407116 0.8622527 0.9566099

7 Nomogram 7 0.8867189 0.02882815 0.8302168 0.9432211

8 SOFA 1 0.8121795 0.06669188 0.6814658 0.9428932

9 SOFA 2 0.8385114 0.05144513 0.7376808 0.939342

10 SOFA 3 0.8178867 0.04559279 0.7285265 0.9072469

11 SOFA 4 0.8375132 0.03750367 0.7640074 0.911019

12 SOFA 5 0.8206032 0.03852817 0.7450894 0.8961171

13 SOFA 6 0.8320381 0.03734823 0.758837 0.9052393

14 SOFA 7 0.8530483 0.03454148 0.7853482 0.9207484

15 APAHEII 1 0.7288462 0.0555797 0.6199119 0.8377804

16 APAHEII 2 0.7154915 0.05312927 0.61136 0.8196229

17 APAHEII 3 0.7439336 0.04645165 0.65289 0.8349771

18 APAHEII 4 0.7600819 0.04106366 0.6795986 0.8405652
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Model Times AUC se Lower Upper

19 APAHEII 5 0.7487865 0.03989944 0.670585 0.826988

20 APAHEII 6 0.7675135 0.03873847 0.6915875 0.8434395

21 APAHEII 7 0.7522338 0.03955836 0.6747008 0.8297668

Nomogram 1 0.9487952 0.03322147 0.8836823 1

Nomogram 2 0.9629877 0.02185734 0.9201481 1

Nomogram 3 0.971173 0.0168295 0.9381878 1

Nomogram 4 0.9242137 0.04749708 0.8311211 1

Nomogram 5 0.9176545 0.04367461 0.8320538 1

Nomogram 6 0.9044511 0.0428194 0.8205266 0.9883756

Nomogram 7 0.9008942 0.04352179 0.8155931 0.9861954

SOFA 1 0.935241 0.02934965 0.8777167 0.9927652

SOFA 2 0.8729012 0.07822914 0.7195749 1

SOFA 3 0.8818133 0.06032423 0.76358 1

SOFA 4 0.7815648 0.10796062 0.5699659 0.9931637

SOFA 5 0.7497259 0.10198337 0.5498421 0.9496096

SOFA 6 0.7760061 0.09571886 0.5884006 0.9636116

SOFA 7 0.768767 0.09614232 0.5803315 0.9572025

APACHEII 1 0.7861446 0.10414901 0.5820163 0.9902729

APACHEII 2 0.7424444 0.0914684 0.5631697 0.9217192

APACHEII 3 0.8117419 0.07624332 0.6623077 0.9611761

APACHEII 4 0.8219565 0.06864271 0.6874193 0.9564938

APACHEII 5 0.7858111 0.07194703 0.6447975 0.9268247

APACHEII 6 0.8073238 0.06854026 0.6729873 0.9416602

APACHEII 7 0.8004681 0.06956199 0.6641291 0.9368071

Appendix 2

Times Model Reference delta.AUC se Lower Upper P Contrast

1 1 cox_model_
APACHEII

Nomogram 0.1425 0.14060528  − 0.13308128 0.4180813 0.3108331 cox_model_
APACHEII—
Nomogram

2 2 cox_model_
APACHEII

Nomogram  − 0.03125 0.11963259  − 0.26572557 0.2032256 0.7939256 cox_model_
APACHEII—
Nomogram

3 3 cox_model_
APACHEII

Nomogram 0.006202095 0.08269078  − 0.15586886 0.168273 0.940212 cox_model_
APACHEII—
Nomogram

4 4 cox_model_
APACHEII

Nomogram 0.030816966 0.05786965  − 0.08260547 0.1442394 0.5943633 cox_model_
APACHEII—
Nomogram

5 5 cox_model_
APACHEII

Nomogram 0.027996222 0.05776649  − 0.08522401 0.1412165 0.6279284 cox_model_
APACHEII—
Nomogram

6 6 cox_model_
APACHEII

Nomogram 0.053260328 0.05692244  − 0.0583056 0.1648263 0.3494458 cox_model_
APACHEII—
Nomogram

7 7 cox_model_
APACHEII

Nomogram 0.064672484 0.06065494  − 0.05420902 0.183554 0.286317 cox_model_
APACHEII—
Nomogram
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Times Model Reference delta.AUC se Lower Upper P Contrast

1 1 SOFA_
model

Nomogram 0.14625 0.139489  − 0.127143423 0.4196434 0.29442223 SOFA_
model—
Nomogram

2 2 SOFA_
model

Nomogram 0.06919643 0.08770277  − 0.102697834 0.2410907 0.43011903 SOFA_
model—
Nomogram

3 3 SOFA_
model

Nomogram 0.06411523 0.06661443  − 0.066446659 0.1946771 0.33580727 SOFA_
model—
Nomogram

4 4 SOFA_
model

Nomogram 0.07143817 0.05246643  − 0.031394153 0.1742705 0.17332493 SOFA_
model—
Nomogram

5 5 SOFA_
model

Nomogram 0.07876358 0.05136076  − 0.02190165 0.1794288 0.12514378 SOFA_
model—
Nomogram

6 6 SOFA_
model

Nomogram 0.0954887 0.05124713  − 0.004953837 0.1959312 0.0624203 SOFA_
model—
Nomogram

7 7 SOFA_
model

Nomogram 0.10329533 0.05510236  − 0.004703312 0.211294 0.06084666 SOFA_
model—
Nomogram
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Abbreviations
SFTS  Severe fever with thrombocytopenia syndrome
APACHE II  Acute physiology and chronic health evaluation II score
SOFA  Sequential organ failure assessment score
IgM  Immunoglobulin M
IgG  Immunoglobulin G
T(℃)  Body temperature
HRate  Heart rate
MAP  Mean arterial pressure
MV  Mechanical ventilation
HFNC  High-flow nasal cannula
CRRT   Continuous renal replacement therapy
IVIG  Intravenous immunoglobulin
WBC  White blood cell
ANC  Absolute neutrophil count
ALC  Absolute lymphocyte count
PLT  Platelet count
CRP  C-reactive protein
U  Urea
Cr  Creatinine
TBil  Total bilirubin
ALT  Alanine aminotransferase
AST  Aspartate aminotransferase
ALB  Albumin
LDH  Lactate dehydrogenase
ALP  Alkaline phosphatase
PNI  Prognostic nutritional index
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