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Abstract
Background Human polyomaviruses (HPyVs), JC polyomavirus (JCPyV) and BK polyomavirus (BKPyV), have been 
found in upper tract urothelial carcinoma UTUC; however, the association of the viral oncogenic factors and clinical 
characteristics of UTUC remains unclear. This study aimed to investigate the prevalence of JCPyV and BKPyV in UTUC 
and their correlation with cancer progression among the southwest Taiwanese population from 2020 to 2022.

Methods A total of 72 paraffin-embedded UTUC tissue samples and 41 adjacent tissue samples were collected from 
72 patients. Nested polymerase chain reaction and DNA sequencing were used to detect viral DNA and genotypes. 
Immunohistochemistry was performed using anti- large T (LT) and anti-p53 monoclonal antibodies to detect the 
expression of viral early LT protein and cellular p53 protein, respectively.

Results The overall prevalence of JCPyV and BKPyV were higher in UTUC than in adjacent tissue samples (65.3% 
[47/72] vs. 17.1% [7/41]). JCPyV and BKPyV were detected in 95.7% (45/47) and 4.3% (2/47) of the HPyVs-positive UTUC 
samples, respectively. JCPyV-TW-3 was the predominant strain of JCPyV infection. In UTUC samples, the LT protein 
of JCPyV and BKPyV positivity rate was 65.3%, while that of mutant p53 protein was 52.7%. JCPyV infection and LT 
protein expression increased the odds ratio (OR) of UTUC by 9.13-fold. The OR of UTUC was higher by 10.34-fold in 
patients with mutant p53 and by 10.37-fold in those with simultaneous LT and mutant p53 expression. The presence 
of LT protein in UTUC patients may increase the OR of mutant p53 protein expression by 2.93-fold compared to its 
absence. Women had a 5.19-fold higher superiority of JCPyV infection and LT expression than men. Patients with 
chronic kidney disease (CKD) had a 3.15-fold higher OR for mutant p53 protein expression than those without it. In 
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Background
Urothelial carcinoma, the sixth most prevalent solid 
tumor, comprises lower urothelial carcinomas (blad-
der and urethra) and upper tract urothelial carcinomas 
(UTUCs, including renal calyces, renal pelvis, and ure-
ter). The occurrence of UTUC, similar to that of blad-
der cancer, is influenced by various factors [1], including 
arsenic exposure, smoking, analgesic abuse, occupational 
carcinogens, hypertension, chronic urinary tract obstruc-
tion, infections, and kidney disease [2–4]. About two-
thirds of patients diagnosed with UTUC have invasive 
disease. The most prevalent symptom is hematuria (70–
80%), with flank pain also common due to clot or tumor 
obstruction. Systemic symptoms such as anorexia, weight 
loss, malaise, fatigue, fever, night sweats, and cough sug-
gest a worse prognosis [1]. Treatment options include 
nephroureterectomy, endoscopic management, and sys-
temic therapies, such as chemotherapy and immunother-
apy [1]. According to the tumor- node-metastasis (TNM) 
staging system [5], chemotherapy is generally recom-
mended for advanced stages, specifically from stage T2 
beyond (invasion into the muscle layer), including stages 
N (lymph node involvement) and M (distant metastasis) 
[1]. The grade of the tumor, which indicates how much 
the tumor cells differ from normal cells, is crucial for 
prognosis. High-grade tumors tend to be more aggressive 
and exhibit a poorer prognosis [1]. Tissue-tropic micro-
organisms that remain latent or proliferate in the urinary 
or reproductive tract for an extended period can cause 
chronic infection, thereby increasing the risk of related 
cancers in the urinary or reproductive tract [6, 7]. Patho-
gens, such as the Epstein–Barr virus (EBV), cytomega-
lovirus (CMV), human papilloma virus (HPV), and JC 
polyomavirus (JCPyV), not only infect cells but also dis-
rupt multiple cellular processes by producing oncopro-
teins that interact with intracellular p53. This disruption 
leads to unrestricted cell proliferation and tumor forma-
tion [6, 7].

At least 14 species of human polyomaviruses (HPyVs) 
have been identified, with the BK polyomavirus (BKPyV) 
and JCPyV being the most common. Both share a high 
degree of similarity, with nearly 72% homology in their 
entire nucleotide sequences [8]. Their genomes are cir-
cular and consist of three major regions, namely early, 
late and non-coding control regions (NCCR). The 
early region encodes alternatively spliced transforming 

proteins, including the large T (LT) and small t (st) anti-
gens. The late region encodes the capsid structural pro-
teins, VP1, VP2, and VP3, along with a small regulatory 
protein, termed agnoprotein. Meanwhile, the NCCR con-
tains the origin of replication, promoter, and enhancer, 
driving the bidirectional replication of early and late 
genes. Most strains show a high degree of sequence con-
servation in the protein-coding regions of the genome, 
whereas the NCCR displays significant variation among 
different HPyV isolates. This variation is attributed to 
deletions, duplications, and rearrangements of a core set 
of sequence blocks [9–11]. Primary infections of JCPyV 
and BKPyV typically occur during childhood, often go 
unnoticed, and present asymptomatically. Following the 
initial infection, polyomaviruses establish latency within 
tissue cells and may later reactivate under immuno-
compromised conditions, leading to tissue damage [12]. 
JCPyV is associated with progressive multifocal leuko-
encephalopathy (PML) [8, 13], while BKPyV is linked to 
polyoma-associated nephropathy, including hemorrhagic 
cystitis, interstitial nephritis, and ureteral stenosis [8]. 
HPyVs have been implicated in many tumors; particu-
larly, JCPyV is linked to brain, colon, esophageal, gastric, 
bladder, and prostate cancers, while BKPyV is associated 
with insulinomas, Kaposi’s sarcomas, bladder, and bone 
tumors [8]. Transformed cells express polyomavirus 
genomic DNA and early LT antigen, which interact with 
the tumor suppressor proteins, p53 and pRb, leading to 
uncontrolled cell proliferation [14–18].

The p53 protein is a crucial tumor suppressor. Viral 
infections can lead to p53 gene mutations and altered 
expression, often compromising its tumor suppressor 
function; the loss of p53 function is represents a crucial 
step in carcinogenesis [19, 20]. p53 is the most commonly 
mutated gene in human cancers, with mutations occur-
ring in over 50% of all cases across various cancer types 
[19]. For instance, HPV, particularly HPV-16 and HPV-
18, interact with p53 and retinoblastoma (pRb) through 
the HPV E6 and E7 protein, which is associated with cer-
vical cancer [21]. Hepatitis B Virus (HBV) and Hepatitis 
C Virus (HCV)-related hepatocellular carcinoma (HCC) 
demonstrate that the viruses can integrate into the host 
genome and induce p53 gene mutations [22]. In naso-
pharyngeal carcinoma and Burkitt’s lymphoma caused 
by EBV, EBV is present in 30–50% of cases with varying 
p53 expression [23, 24]. JCPyV and BKPyV have been 

the UTUC advanced stages, the OR of virus and LT expression was 3.18-fold higher compared to those who do not 
require chemotherapy.

Conclusions JCPyV infection is highly prevalent in UTUC, and the presence of CKD concurrent with high expressions 
of LT and mutant p53 proteins in patients may be a useful indicator for chemotherapy and poor prognosis.
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found in many human cancers [8]. Over 80% of colorectal 
cancers harbor JCPyV DNA [7], with some cases show-
ing p53 protein activity, where the virus inactivates p53 
through its LT protein binding [15, 25]. However, some 
tumors demonstrate mutant p53 protein expression 
regardless of viral infection, such as non-small cell lung 
cancers harboring p53 mutations in 50–80% [26–28], 
breast cancer in 20–35% [29, 30], and high-grade serous 
ovarian carcinomas in over 96% of cases [31]. Therefore, 
the mutation of p53 protein and their correlation with 
viral infections vary by cancer type and viral etiology.

In the current epidemiological investigation of UTUC 
in Taiwan, an unusual prevalence of UTUC [32, 33] was 
found to be associated with Blackfoot disease in southern 
Taiwan, as well as arsenic-contaminated water consump-
tion [34, 35], sex, tumor staging, and chronic kidney dis-
ease (CKD) [32, 36]. Although the association of UTUC 
and viruses remains poorly studied, HPyVs have been 
detected in urothelial carcinoma [37–41]. However, 
no study has explored the mutation of p53 protein and 
its association with human polyomavirus infection in 
UTUC. Moreover, the relationship between the expres-
sion of the viral LT antigen and mutant p53 protein 
following viral infection and the clinicopathological char-
acteristics and progression of UTUC remains unclear.

Thus, this study aimed to investigate the prevalence of 
JCPyV and BKPyV infections in the southwestern Tai-
wanese population from 2020 to 2022 and their associa-
tion with UTUC. Moreover, we evaluated the association 
between the presence of JCPyV/BKPyV and the clinical 
characteristics in patients with UTUC.

Methods
Determining JCPyV and BKPyV DNA positivity rates in 
UTUC and adjacent tissues
Clinical specimens
To examine the polyomavirus genome and viral pro-
tein expression, 113 formalin-fixed, paraffin-embedded 
(FFPE) specimens (72 and 41 specimens from cancer 
and adjacent tissues, respectively) were obtained from 72 
patients diagnosed with UTUC at the Urology Depart-
ment of Chiayi Christian Hospital, Taiwan between 2020 
and 2022 during nephroureterectomy. These specimens 
were cleaned by phosphate buffered saline, processed 
independently, and preserved in the pathology depart-
ment until analysis. All patients included in the study 
were diagnosed with UTUC after presenting with hema-
turia. The clinicopathological stage of the cancers ranged 
from Tx to T4, as defined by the American Joint Com-
mittee on Cancer TNM staging system for UTUC [5]. 
Exclusion criteria comprised: (1) other tumors, (2) with 
immune system diseases or ongoing immune therapy, 
and (3) lack of independent consciousness preclud-
ing the patient from making decisions based on their 

own thoughts and senses. All patients provided written 
informed consent, and their confidentiality was strictly 
protected. Specimens were collected following thorough 
review, with the study receiving approval from the insti-
tutional review board of Chiayi Christian Hospital.

DNA extraction
Tissue samples were processed according to the meth-
odology described by Tseng et al. [42–44]. Briefly, DNA 
was extracted from paraffin-embedded tissues fol-
lowing the Gene JET FFPE DNA purification reagent 
(Thermo Fisher, Vilnius, Lithuania) guidelines. The tis-
sues were deparaffinized using xylene, washed 2–3 times 
with anhydrous alcohol, rinsed with deionized water to 
eliminate residual alcohol, and air dried. Subsequently, 
the samples were treated with 50 µg/mL proteinase K at 
50 °C for 16–18 h, heat inactivated by boiling in water for 
10 min, and centrifuged at 10,000 rpm for 3 min to col-
lect the 100-microliter supernatant for DNA purification. 
We used 200 ng of DNA for viral DNA detection through 
nested polymerase chain reaction (PCR). The amplified 
DNA was preserved at − 20 °C until further use.

Nested PCR and DNA sequencing
An FFPE cell line carrying JCPyV (JCI) was used as a 
positive control for both PCR and immunohistochemi-
cal staining [43]. Nested PCR was used to confirm the 
presence of viral DNA in UTUC specimens. To identify 
changes in polyomavirus infection, the viral genome 
may undergo rearrangement in its regulatory region, 
leading to the emergence of new genetic variants [11]. 
We employed two primer pairs specifically designed to 
amplify the conserved regulatory regions of both JCPyV 
and BKPyV [42, 43]. The initial PCR utilized the primer 
pair JBR1 and JBR2 (nucleotides 5067–5091 of JCPyV 
TW-3 strain, 5ʹ- C C T C C A C G C C C T T A C T A C T T C T G A 
G-3ʹ and 279 − 255, 5ʹ- G T G A C A G C T G G C G A A G A A C C 
A T G G C-3ʹ, respectively) for regulatory region amplifica-
tion. Subsequently, 5 µL of the initial PCR product served 
as the template, and the primer pair JBRNS and JBRNAS 
(nucleotides 5,100-5 of JCPyV TW-3 strain, 5ʹ- G A G G C 
G G C C T C G G C C T C-3ʹ and 227 − 212, 5ʹ- G G C T C G C A 
A A A C A T G T-3ʹ, respectively) was employed for the sec-
ond PCR, amplified DNA fragments of 243 bp for JCPyV 
or 289 bp for BKPyV. To confirm the presence of tissue 
DNA and minimize the risk of false-negative results, 
concurrent PCR amplification of the human beta-actin 
(β-actin) 5ʹ UTR region was conducted.

All specimens were analyzed in triplicate, and the 
resulting secondary PCR products were subjected to 
2.5% agarose gel electrophoresis. The positive controls 
for the JCPyV CY genotype (GenBank accession No. 
AB038249.1) and BKPyV UT (GenBank accession No. 
M 34049.1) were incorporated, resulting in bands of 
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approximately 243  bp and 289  bp in size, respectively. 
To further characterize the genetic variations, the puri-
fied PCR DNA fragments were ligated into the sequenc-
ing plasmid T-vector (Promega, Madison, WI, USA). 
Subsequent sequencing of the inserts within the T vec-
tor was performed using M13 primers (Mingxin Biotech-
nology, Taipei City, Taiwan). All the obtained sequences 
were compared with the JCPyV-CY archetype (GenBank 
accession No. AB038249.1) NCCR sequence, which con-
tains the complete sequence without mutations from 
− 6 to 237 nucleotides, and the BKPyV-UT prototype 
(GenBank accession No. M34049.1), with its unmutated 
NCCR sequence spanning 1–289 nucleotides. This com-
parison was conducted to confirm whether the regula-
tory regions underwent rearrangement and to determine 
the variants.

Detection of viral LT protein and cellular p53 protein 
expressions in UTUC tissues by immunohistochemistry 
staining
To test the potential contribution of JCPyV and BKPyV 
to UTUC tumorigenesis, the expressions of early viral 
protein and cellular p53 proteins were assessed using 
immunohistochemistry (IHC) [45–47]. IHC staining was 
performed using the avidin–biotin–peroxidase complex 
system (Vectastain ABC peroxidase kit, Vector Laborato-
ries, Burlingame, CA, USA), as previously described [42] 
with minor modifications. Briefly, a 3 μm FFPE tissue sec-
tions were deparaffinized in xylene, rehydrated through 
a gradient of 70–100% ethanol, and subjected to antigen 
retrieval. Anti-SV40 LT (MA1-90661; Thermo Fisher, Vil-
nius, Lithuania) and anti-p53 (ab131442; Abcam, Cam-
bridge, USA) primary monoclonal antibodies were used 
to detect the expression of early viral protein and cellular 
p53 proteins. Tissue sections were incubated overnight 
in a humid chamber at 37  °C, followed by sequential 
addition of biotinylated secondary antibodies and avi-
din-biotin complexes for 1  h each. After color develop-
ment with diaminobenzidine substrate (Sigma-Aldrich, 
St. Louis, Missouri, USA), sections were counterstained 
with hematoxylin. The slides were mounted and observed 
under a microscope. Scores for each strain of LT pro-
tein are defined as: negative (-), for < 10% positive cells 
and positive results, including (+) for 10–30%, (++) for 
31–60%, and (+++) for > 60% positive cells, respectively 
[42]. In p53 IHC staining, we distinguish between wild-
type (WT) and mutant (MT) p53 primarily based on 
the intensity, distribution, and localization of the stain-
ing. The proportion of wild-type positive cells is typically 
10–30%, with moderate to weak nuclear staining inten-
sity. The staining is localized, with expression observed 
in only some cells and not exhibiting uniformly strong 
intensity throughout the tumor. Mutant staining patterns 
can be categorized into overexpression, cytoplasmic, and 

null patterns. The overexpression pattern is character-
ized by intense nuclear staining, with staining intensity 
significantly higher than that of normal tissue controls. 
The proportion of positive cells often exceeds 70%, with 
strong and evenly distributed nuclear staining. This dem-
onstrates consistent and robust nuclear staining, origi-
nating in the basal layer of the urothelium and extending 
into suprabasal layers. The cytoplasmic pattern involves 
abnormal cytoplasmic staining of the p53 protein, some-
times accompanied by nuclear staining. The staining 
intensity is typically strong, and the proportion of posi-
tive cells in tumors is generally > 30%. The null pattern 
is defined by the complete absence of p53 expression in 
tumor cells, presenting with no or extremely weak stain-
ing. In this pattern, the proportion of positive cells is typ-
ically < 10% [45–47].

Statistical analysis
Differences in viral DNA and LT antigen and p53 pro-
tein expression between the UTUC and normal tis-
sues were examined using the Fisher’s exact test or the 
Mann–Whitney U test, where appropriate. The associa-
tion between clinical patient characteristics and JCPyV/
BKPyV expression in UTUC cells was assessed using the 
χ² test or Fisher’s exact test. Odds ratio (OR) were used 
to describe the risk of UTUC according to presence of 
HPyV infection. All statistical analyses were performed 
using the Statistical Package for Social Sciences version 
20.0 software (SPSS for Windows Inc., Chicago, IL, USA), 
and a P-value < 0.05 indicated statistical significance.

Results
Clinical characteristics of patients with UTUC
Table 1 outlines the patient characteristics. We included 
28 males (38.9%) and 44 females (61.1%) for this study; 
32 (44.4%) and 40 (55.6%) patients were aged < 65 years 
and ≥ 65 years, respectively. We categorized the patients 
based on the presence of CKD: non-CKD (41.7%) and 
CKD (58.3%). CKD is defined as persistent abnor-
malities in kidney structure or function, a glomerular 
filtration rate [GFR] < 60 mL/min/1.73  m², or albumin-
uria ≥ 30  mg/24 hours, for more than 3 months [48]. 
Regarding cancer stage according to the need for chemo-
therapy, 39 (54.2%) patients had Ta-T2 disease and did 
not require chemotherapy, while 33 (45.8%) had T3-T4 
disease and required chemotherapy. For tumor grad-
ing, five (6.9%) and 67 (93.1%) patients had low and high 
grading, respectively.

Viral DNA in UTUC and normal tissue samples
The results of the nested PCR targeting the regulatory 
regions of JCPyV and BKPyV are shown in Fig. 1; Table 2. 
Among the 72 UTUC specimens, 47 exhibited amplifica-
tions of a 243-bp DNA fragment, consistent with the size 
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of JCPyV (Fig. 1a). In two specimens, a 289-bp DNA frag-
ment was amplified, indicating the presence of BKPyV. 
PCR analysis revealed that only seven of the 41 adjacent 
tissue specimens tested positive for infection (Fig.  1b). 
Subsequent validation through DNA sequencing con-
firmed that 45 of the 47 UTUC-positive specimens were 
positive for JCPyV, whereas two were positive for BKPyV, 
yielding a positivity rate of 65.3% (47/72) for viral DNA 
in UTUC tissues. All seven adjacent tissue samples that 
tested positive contained JCPyV, yielding a positivity rate 
of 17.1% (7/41). The prevalence of JCPyV and BKPyV 
DNA was higher in UTUC tissues than in adjacent tis-
sues (Table 2).

Viral DNA genotype in UTUC tissue samples
Both archetypal-like and rearranged-like genotypes of 
JCPyV and BKPyV were identified in the tissues (Supple-
mentary Fig. 1). Most of the samples exhibit deletions in 
the pentanucleotide (GGGAA) at nucleotides 195–199 
and pentanucleotide (AAAGC) at nucleotides 224–228 
compared to the JCPyV-CY archetype. This suggests sim-
ilarity to the JCPyV TW-3-like strain (GenBank acces-
sion No. U61771). Among the UTUC specimens, 37 were 
JCPyV TW3-like strains, three resembled the JCPyV CY-
like strain, five were JCPyV SK3-like strains (GenBank 
accession No. AB118652.1), and two exhibited BKPyV 
UT-like strains. All seven adjacent specimens that tested 
positive resembled the JCPyV TW3-like strains. The 
genotyping results indicated that JCPyV was the pre-
dominant viral strain in the UTUC-positive samples, 
accounting for 95.7% (45/47). Among these, 6.7% were 
CY-like (3/45), 82.2% were TW3-like (37/45), and 11.1% 
were SK3-like (5/45). The BKPyV-containing genotypes 
were UT-like, accounting for 4.3% (2/47). In the adjacent 

tissue samples, all seven JCPyV-positive samples exhib-
ited TW3-like genotypes (Table  3). These rearranged 
variants showed distinct nucleotide mutations from the 
original sequences (Supplementary Fig. 1).

Viral LT and cellular p53 protein in the UTUC and adjacent 
tissue samples
Both LT and p53 proteins were detected in the UTUC 
tissues on IHC. The results of IHC staining of LT protein 
is presented in Fig.  2, and the statistical positivity rates 
are shown in Table 2, as well as Supplementary Materi-
als Tables 1 and Table 2. Among the 72 UTUC specimens 
examined, 47 demonstrated positive LT expression, yield-
ing a positivity rate of 65.3% (Table 2). Meanwhile, only 
seven specimens with LT protein expression were identi-
fied in adjacent tissue samples (Supplementary Table 2). 
The results of IHC staining of p53 protein is presented in 
Fig. 3. In 72 UTUC tissue sections, p53 staining revealed 
eight cases with a WT pattern, 23 cases with a mutant-
overexpression pattern, 15 cases with a mutant-null pat-
tern, and no cases with a mutant-cytoplasmic pattern. 
The remaining sections did not exhibit p53 expression, as 
confirmed by HE staining (Table 4, Supplementary Table 
1). In the adjacent tissue sections, four cases exhibited a 
mutant-overexpression p53 pattern, three cases exhibited 
a mutant-null pattern, and the rest were normal tissues 
without p53 expression, also confirmed by HE staining 
(Table 4, Supplementary Table 2).

Association between viral factors and UTUC
Table  5 presents the ORs of UTUC associated with 
JCPyV/BKPyV infections. The results suggest that the 
presence of JCPyV/BKPyV infection may be associated 
with a 9.13-fold increased likelihood of developing UTUC 
compared to the group without viral infection (95% con-
fidence interval [CI]: 3.54–23.55, P < 0.001). Additionally, 
the data reveal that the OR of UTUC may increase by 
9.13-fold when the virus expresses the LT protein (95% 
CI: 3.54–23.55, P < 0.001). Cancer is potentially 10.34-fold 
more likely to develop when p53 expression is mutant 
(95% CI: 3.54–23.55, P < 0.001). The combined presence 
of JCPyV/BKPyV infection and simultaneous expres-
sion of LT protein and/or cellular mutant p53 protein 
may be associated with a 10.37-fold increased likelihood 
of UTUC (95% CI: 1.90–38.72, P = 0.001). Additionally, 
we analyze the association between p53 protein and LT 
protein in patients with UTUC. The results suggest that 
the presence of LT protein in patients with UTUC may 
increase the OR of MT p53 protein expression by 2.93-
fold (95% CI: 1.33–6.48, P = 0.007), compared to cases 
without LT protein expression (Table  6). These findings 
represent preliminary associations and do not establish 
causation.

Table 1 Patient characteristics
Variable UTUC

N = 72 (100%)
Sex
 Male 28 (38.9%)
 Female 44 (61.1%)
Age (years)
 < 65 32 (44.4%)
 ≥ 65 40 (55.6%)
Disease
 Non-CKD 30 (41.7%)
 CKD 42 (58.3%)
TNM staging
 Ta-T2 39 (54.2%)
 T3-T4 33 (45.8%)
Tumor grading
 Low 5 (6.9%)
 High 67 (93.1%)
CKD, chronic kidney disease; UTUC, upper tract urothelial carcinoma, TNM, 
tumor- node-metastasis
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Association between JCPyV/BKPyV virus infection and 
clinical characteristics of UTUC
We analyzed the potential associations between the clini-
cal characteristics of patients with UTUC, including sex, 

age, CKD, tumor stage, and tumor grade, with JCPyV/
BKPyV infection (Table  7). These results showed that, 
among patients with UTUC, females had a higher OR of 
JCPyV/BKPyV infection than males did (OR = 5.19, 95% 
CI: 0.07–0.55, P = 0.001). Similarly, the OR for LT protein 
expression associated with viral infection was higher in 
females (OR = 5.19, 95% CI: 1.18–2.92, P = 0.001). The 
OR for mutant p53 protein expression was significantly 
higher in patients with UTUC and CKD than in those 
without CKD (OR = 3.15, 95% CI: 1.17–8.46, P = 0.021). 
When analyzing UTUC stage based on the need for che-
motherapy (Ta-T2 vs. T3-T4), viral infection-associated 
LT protein expression was linked to a higher OR in the 

Table 2 Positivity rate of human polyomavirus infection in UTUC 
and adjacent tissue samples

UTUC [N = 72 (100%)] Adjacent [N = 41(100%)]
Variables Positivity rate (%) Positivity rate (%)
Viral DNA 47/72 (65.3%) 7/41 (17.07%)
LT protein 47/72 (65.3%) 7/41 (17.07%)
Mt p53 protein 38/72 (52.78%) 4/41 (9.75%)
LT + Mt p53 25/72 (34.72%) 2/41 (4.88%)
LT, large T; UTUC, upper tract urothelial carcinoma, Mt p53, mutant p53

Fig. 1 Gel electrophoresis analysis of PCR-amplified products from UTUC and adjacent tissue samples. A set of conserved primers targeting the regula-
tory regions of JCPyV and BKPyV is used for amplification, followed by gel analysis on a 2.5% agarose gel. Lane M contains DNA markers with molecular 
weights of 50, 100, 150, 200,250, 350, and 450 bp. (a) Lane numbers correspond to tissue sample numbers No. 1–72 from UTUC samples. (b) Lane numbers 
represent tissue sample numbers No. 1–41 from adjacent tissue samples. A positive control (P) is included using JCPyV CY and BKPyV UT genomic DNA 
templates, resulting in bands of approximately 243 bp and 289 bp in size, respectively. Negative control (N) indicates that PCR is performed without the 
DNA template. Additionally, β-actin is included as an internal control for PCR analysis. BKPyV, BK polyomavirus; JCPyV, JC polyomavirus; PCR, polymerase 
chain reaction; UTUC, upper tract urothelial carcinoma
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T3-T4 group compared to the Ta-T2 group (OR = 3.18, 
95% CI: 1.12–9.06, P = 0.027). No correlation was 
observed between age and tumor grading.”

Discussion
Although HPyVs have been detected in urothelial carci-
noma, research on their significance in UTUC remained 
limited. In this study, HPyVs were found in 65.3% of the 
analyzed tissue specimens, with JCPyV infection being 
predominantly detected. JCPyV-TW-3-like was the pre-
dominant strain causing JCPyV infection, followed by 
JCPyV-SK3-like (11.1%). The JCPyV Taiwan-3 [49, 50], a 
virus isolated from the urine of an immunosuppressed 
patient with rheumatoid arthritis, has an enhancer-
promoter region of the viral genome that lack a copy of 
pentanucleotide (GGGAA) at nucleotides 195–199 and 
pentanucleotide (AAAGC) at nucleotides 224–228 com-
pared to the CY archetype, while JCPyV SK-3 variants 
(GenBank accession No. AB118652.1) [51] mainly deletes 
the pentanucleotide (AAAGC) at nucleotides 224–228 in 
the NCCR region compared to the CY archetype. These 
results are similar to our previous findings in prostate 
cancer [42]. We found a high prevalence of JCPyV infec-
tion in patients with UTUC in Taiwan between 2020 
and 2022. Further, JCPyV infection was observed to be 
associated with a higher risk of UTUC. In patients with 
UTUC, the expression of viral LT protein may increase 
the OR of mutant p53 protein expression by 2.93-fold, 
compared to cases without LT protein expression. Col-
lectively, these findings suggest that JCPyV/BKPyV infec-
tion, LT expression, and MT p53 expression may play a 
role in the development of UTUC. Additional studies are 
necessary to validate these associations and explore their 
biological and clinical relevance.

With respect to the relationship between JCPyV infec-
tion and the characteristics in patients with UTUC, we 
found that female patients were 5.19-fold more likely 
to be infected with JCPyV. Patients with CKD had a 

3.15-fold higher likelihood of MT p53 protein expression 
than non-CKD patients did. Additionally, compared to 
patients with stage Ta-T2 disease not requiring chemo-
therapy, those with stage T3-T4 disease who required 
chemotherapy had a 3.18-fold higher viral LT protein 
expression. These associations may imply that the high 
prevalence of JCPyV infection in female patients with 
CKD and UTUC, who require chemotherapy and express 
LT and MT p53 proteins, may provide important infor-
mation about disease progression and poor outcomes.

An epidemiological investigation of UTUC found a 
higher prevalence among males than among females, 
with smoking and occupational exposure being the main 
reasons [52]. However, studies in Taiwan have reported 
a higher incidence in females than in males [32, 33, 36], 
and consistent findings were observed in the current 
study. This discrepancy may be linked to chronic disease 
factors in the past. In our results, female patients with 
CKD were more prevalent than male patients. Nonethe-
less, further research is needed to elucidate the causes of 
UTUC. Additionally, atypical incidence rates of UTUC 
have been observed in Taiwan [33], with potential asso-
ciations with Blackfoot disease in southern Taiwan and 
consumption of arsenic-contaminated water [34, 35]. Sig-
nificant correlations with younger age in females, higher 
T stage, and elevated pretreatment levels of serum lactate 
dehydrogenase and creatinine have also been found [33, 
36].

From the perspective of viral infections, we found 
that this high prevalence rate might be related to JCPyV 
infection, with females being more susceptible to JCPyV 
infection and expressing more LT protein than males. 
Additionally, MT p53 protein was found in 52.8% of 
UTUC samples, and LT and p53 were detected at a 
higher rate in tumors with a higher T stage. This suggests 
that these virus-associated phenomena may be important 
indicators of UTUC progression and treatment efficacy. 
Regarding age and tumor grading, our results did not 
reveal a direct relation to viral infections.

JCPyV and BKPyV are widespread in humans. Under 
conditions such as immunosuppression or pregnancy, 
these viruses can reactivate, resulting in increased uri-
nary viral shedding [8]. A retrospective study analyzing 
19 immunosuppressed patients with renal and bladder 
cancer revealed that 11 cases of post-transplant urothe-
lial carcinoma, primarily following kidney or heart trans-
plantation, exhibited high aggressiveness and expressed 
significant levels of LT and p53 proteins, suggesting 
potential viral involvement [53]. Another study reported 
that 31% of renal transplant patients with high-grade 
urothelial carcinoma tested positive for polyomavirus 
LT antigen, particularly among younger individuals [54]. 
Similarly, long-term follow-up revealed BKV-related 
hematuria 14 years after kidney transplantation, further 

Table 3 Genotype of JCPyV/BKPyV in UTUC and adjacent tissue 
samples
Genotypes UTUC sample

(n = 47)
Adjacent sample
(n = 7)

JCPyV 45 (100%) 7 (100%)
 TW3-like 37 (82.2%) 7 (100%)
 CY-like 3 (6.7%) 0 (0.0%)
 SK3-like 5 (11.1%) 0 (0.0%)
BKPyV 2 (100%) 0 (0.0%)
 UT- like 2 (100%) 0 (0.0%)
BKPyV, BK polyomavirus; JCPyV, JC polyomavirus; UTUC, upper tract urothelial 
carcinoma

CY, JCPyV-CY strain (GenBank accession No. AB038249); TW3, JCPyV-TW3 strain 
(GenBank accession No. U61771); SK3, JCPyV-SK3 strain (GenBank accession No. 
AB118652.1)

UT, BKPyV-UT strain (GenBank accession No. M34049.1)
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Fig. 2 Immunohistochemical staining detect the LT proteins in UTUC and adjacent tissues. Sections of UTUC tissues were immunostained using anti-LT 
monoclonal antibodies (a–f). Positive and negative control staining was performed using human prostate adenocarcinoma tissue sections. Positive con-
trol staining is shown in panel (a), while negative control staining is shown in panel (b). In UTUC tissue Sect. 33, positive staining for LT protein is observed 
(c), whereas in tissue Sect. 54, negative staining is evident (d). Similarly, in adjacent tissue Sect. 14, positive staining for LT protein is observed (e), while 
negative staining is observed in tissue Sect. 31 (f). Magnification, × 200. LT, large T; UTUC, upper tract urothelial carcinoma
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Fig. 3 Immunohistochemical staining detect the p53 proteins in UTUC tissues. Sections of UTUC tissues were immunostained using anti-p53 monoclo-
nal antibodies (a, a＇, b, b＇, c, c＇). In UTUC tissue Sect. 18, a scattered pattern of sporadic, scattered p53 nuclear staining within urothelial cells is ob-
served, suggesting a normal/wild-type pattern (panel a, magnification × 40, a＇× 200). Two abnormal (mutant) patterns are observed; in tissue Sect. 48, 
the staining shows diffuse overexpression, with strong nuclear staining extending from the basal layer into the suprabasal layers of urothelial cells (panel 
b, magnification × 40, panel b＇× 200), tissue Sect. 67, null pattern (mutant) is present, with a complete absence of p53 staining in the tumor, while 
positivity is observed in the background inflammatory cells (panel c, magnification × 40, panel c＇× 200)
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associating BKV with urinary tract cancers [55]. How-
ever, it remains unclear whether viral reactivation drives 
carcinogenesis or if cancer itself promotes viral activa-
tion. Our study aimed to investigate the association of 
JCPyV and BKPyV with UTUC, specifically excluding 
patients with immune-related diseases or those undergo-
ing immunosuppressive therapy. Our results identified 
JCPyV as the predominant strain in patients with UTUC, 
with LT protein expression detected in tumors. These 
findings suggest that JCPyV may contribute to tumor 
progression in UTUC under normal immune conditions.

Additionally, four patients exhibited MT p53 protein in 
adjacent UTUC tissues. The results remained consistent 
on triple staining. Analysis of the clinical features showed 
that these patients were aged 62–68 years, and two were 
aged > 65 years. Previous studies of basal cell carcinoma 
have shown MT p53 in adjacent tissues. p53 protein 
expression in the adjacent cells of older patients may 
be associated with early cancer progression [56]. These 
results align with our observations and provide further 
evidence of the potential role of p53 expression in early 
cancer development.

Limitations
This study collected UTUC specimens from 2020 to 2022. 
Due to the exclusion of patients with other cancers and 
immune diseases, the number of cases recruited was lim-
ited. PCR, immunohistochemistry (IHC), and sequenc-
ing were used to analyze the association between viruses 
and clinical symptoms, which leaned more toward obser-
vational research. While these methods provide valuable 
insights into potential correlations, they cannot con-
firm direct interactions between JCPyV or BKPyV and 
tumorigenesis in UTUC. The pathogenic mechanisms 
of these viruses in UTUC have not yet been conclusively 
determined. Although the study’s descriptive nature lim-
its definitive conclusions, it highlights the importance of 
investigating these viral infections further. Future studies 
should employ advanced molecular techniques, such as 
RNA in situ hybridization (RNA-ISH) and fluorescence 
in situ hybridization (FISH), to clarify these interactions.

Conclusions
In conclusion, we analyzed JCPyV and BKPyV infections 
in 72 cases of UTUC in Taiwan from 2020 to 2022, iden-
tifying JCPyV-TW3 as the predominant strain. Patients 
with advanced-stage UTUC requiring chemotherapy 
(T3-T4) and CKD exhibited significant correlations with 
JCPyV infection, positive LT expression, MT p53 protein 
expression in tissues. These findings suggest that JCPyV 

Table 4 IHC staining for p53 protein pattern of UTUC samples
Pattern UTUC sample

(n = 72)
Adjacent sample
(n = 41)

Wild type 8 (11.11%) 0 (0%)
mutant 38 (52.78%) 4 (9.75%)
 overexpression 23 (31.95%)  1(2.44%)
 null 15 (20.83%) 3 (7.31)
 cytoplasmic 0(0.0%) 0(0.0%)
Not-detected 26 (36.11%) 0 (0.0%)
IHC, immunohistochemistry, UTUC, upper tract urothelial carcinoma

Table 5 Association of HPyVs infection with risk of UTUC
Cell type N Variable OR (95% CI) P-value

Viral DNA(+) Viral DNA(-)
UTUC 72 47 25 9.13(3.54–23.55) < 0.001
Adjacent 41 7 34 1.00

Viral LT(+) Viral LT(-)
UTUC 72 47 25 9.13(3.54–23.55) < 0.001
Adjacent 41 7 34 1.00

Mt-p53 Others
UTUC 72 38 34 10.34(3.34–32.02) < 0.001
Adjacent 41 4 37 1.00

LT +
Mt p53

Others

UTUC 72 25 47 10.37(2.31–46.56) < 0.001
Adjacent 41 2 39 1.00
P-values are calculated using the χ2 test or Fisher’s exact test, as appropriate

CI, confidence interval; LT, large T; OR, Odds ratio; UTUC, upper tract urothelial carcinoma

Table 6 ORs of the association between MT p53 protein and 
viral LT protein in UTUC patients

N Variable OR (95%CI) P value
Mt p53 Others

Viral LT (+) 54 27 27 2.93(1.33–6.48) 0.007
Viral LT (-) 59 15 44 1.000
P value by χ2 test or Fisher’s exact test when appropriate. CI, confidence interval; 
OR, odds ratio
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infection and the interplay between LT and MT p53 may 
contribute to UTUC progression and serve as poten-
tial markers for chemotherapy decisions and prognosis. 
Although BKPyV was also analyzed, its role in UTUC 
remains inconclusive and requires further investigation. 
This study provides preliminary evidence, laying the 
foundation for research on the association between viral 
infections and UTUC. Further investigation is needed to 
explore the roles of viral infections, p53 expression, and 
immune regulation in the development of UTUC.
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