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Abstract 

Acute kidney injury (AKI) is a condition that can result in changes in both urine production and creatinine levels 
in the bloodstream, complicating the treatment process and worsening outcomes for many hospitalized patients. 
BK polyomavirus (BKPyV), a member of the Polyomaviridae family, is prevalent in the population and remains latent 
in the body. It can reactivate in individuals with a compromised immune system, particularly post-kidney transplant, 
and can activate various transcription factors and immune mediators. Although reactivation is often asymptomatic, it 
can present as AKI, which is a risk factor for early loss of the transplanted organ. The immune response to BKPyV is cru-
cial in controlling the virus and safeguarding organs from damage during infection. Understanding BKPyV pathways 
may offer novel opportunities for effectively treating BKPyV-associated complications. This review seeks to elucidate 
the potential mechanisms by which BKPyV reactivation can lead to AKI by analyzing various signaling pathways, 
as well as the identification of molecular mechanisms that BKPyV may utilize to induce AKI.
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Introduction
Acute kidney injury (AKI) encompasses a range of dif-
ferent types of conditions. Several health conditions can 
cause a sudden decline in kidney function, leading to 
elevated creatinine levels in the blood and insufficient 
urine output for at least a week [1]. AKI is usually a con-
sequence of acute or chronic illness which affects roughly 
20% of hospitalized patients and about 10% of them 
need kidney transplantation [2]. AKI in kidney transplant 
recipients (KTRs) is a leading cause of morbidity, hos-
pitalization, and hospital readmission [3]. AKI in KTRs 
can be caused by acute rejection, due to drugs, infection, 

urinary obstruction, vascular thrombosis, and bacterial 
and viral infections [4].

Additionally, BK polyomavirus (BKPyV) is one of the 
viruses that can be cited as the reason for AKI in KTRs. 
The presence of BKPyV is widespread in nearly all human 
populations worldwide. The infection with this virus is 
asymptomatic in early childhood and persists in the kid-
neys for lifelong [5]. It is activated in pharmacological 
and pathological immunodeficient patients [6]. BKPyV 
infection can cause polyomavirus-associated nephropa-
thy (BKPyVAN) in KTRs [7]. Although reactivation is 
often asymptomatic, it can manifest as AKI and is a risk 
factor for early allograft loss [8]. Therefore, this review 
describes the possible ways that BKPyV reactivation can 
cause AKI such as signaling pathways, including NF-κB 
and TGF-β, which are crucial in mediating BKPyV activ-
ity and the development of AKI. Various research find-
ings have suggested that the NF-κB signaling pathway is 
essential for regulating the inflammatory response and 
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is associated with the etiology of renal fibrosis [9]. And, 
TGF-β, existing as a dimer, facilitates kidney fibrosis 
through the activation of both canonical and non-canon-
ical signaling pathways [10]. The recurrence of AKI is 
a prominent risk factor for the onset of chronic kidney 
disease, largely due to its role in inducing renal fibro-
sis, which is the ultimate pathological manifestation of 
chronic kidney disease [11].Additionally, the molecular 
mechanisms by which cytokines influence inflammatory 
processes are discussed. A shift in the expression of cer-
tain inflammatory mediators, such as TNF-α, IL-6, IL-15, 
and IL-11, may be implicated in the pathogenesis of AKI.

BK polyomavirus in KTRs
Dialysis and renal transplantation are treatment options 
for end-stage renal disease (ESRD) [12]. The increasing 
prevalence of ESRD and declining organ donation rates 
have resulted in a critical shortage of transplantable kid-
neys [13]. The average time between being on the trans-
plant waiting list and receiving kidney transplantation has 
increased dramatically over the past years [14]. Although 
a kidney transplant is preferable to continuous dialysis, 
the need to take immunosuppressive medication remains 
a significant concern [15]. With the  presentation  of 
more powerful immunosuppression regimens and dimin-
ished  acute  rejection  rates, viral  infections  after renal 
transplantation have developed as a critical cause of allo-
graft loss [16]. BKPyV can be a common infection expe-
rienced after kidney transplantation [17]. BKPyV belongs 
to the Polyomaviridae family of double-stranded DNA 
(dsDNA) viruses [18]. It is a non-enveloped DNA virus 
that was first discovered in 1971 in the urine of a kidney 
transplant recipient [19]. The BKPyV genome contains 
an early domain encoding large and small T antigens 
(LT-Ag and st-Ag), a late domain for capsid proteins 
VP1-3 and anaproteins, and a non-coding regulatory 
domain (NCCR). Polymorphisms in VP1 and NCCR 
give rise to six different strains of BKPyV [20]. BKPyV 
is  broadly  predominant  in  the common  populace  with 
over 80% of people having antibodies against BKPyV. The 
foremost  common mode of transmission is through 
respiratory secretions [20], which  usually  causes  pri-
mary  infection  during childhood and infects the uri-
nary epithelium, ureter, and bladder [21]. Reactivation of 
BKPyV is influenced by immunosuppression and various 
factors, including allograft, viral, and host components 
[22, 23]. Within 48 h of viral replication, human tubular 
epithelial cells experience various genomic changes that 
initiate key biological processes like the cell cycle, apop-
tosis, DNA damage, and the release of immune media-
tors. These processes collectively contribute to the lytic 
phase of virus reactivation and its persistence in the 
renal allograft [24]. During the lytic and latent phases 

of infection, viruses are able to control the expression 
of their viral proteins [25]. Due to suppression of cellu-
lar infection by combination therapy during the first year 
after transplantation, viral replication often occurs dur-
ing this period. In KTRs, clinically significant disease 
arises from either the reactivation of a latent infection or 
the transmission of a new infection from the donor kid-
ney. The disease progresses through the following stages: 
viruria, viremia, and allograft nephropathy [26]. Viruria 
was diagnosed in approximately 30% of kidney trans-
plant recipients and viremia in 12% [27]. About half of all 
KTRs experience viremia within 2 to 6 weeks following 
the onset of viruria, and approximately 50% of viremic 
patients develop BKPyVAN within the defined time 
frame [28, 29]. The initial line of defense against BKPyV 
infection is innate immunity; however, it appears insuf-
ficient to effectively eliminate the viral presence [30].

The etiology of AKI
AKI is predominant in hospitalized patients, up to 
10–20% of all patients and up to 50% of those in inten-
sive care units (ICU) [31]. The causes of AKI are typically 
divided into three main categories: pre-renal, intra-renal, 
and pos-trenal (Fig. 1). Pre-renal AKI represents 55% of 
cases, and intra-renal AKI appears in 45% of all patients. 
Post-renal AKI is rare and occurs in 5% of cases. The fore-
most cause of pre-renal AKI is transitory renal hypop-
erfusion. A significant decrease in mean arterial blood 
pressure leads to AKI in 55% of cases [32]. Many condi-
tions can lead to pre-renal AKI, but it can be reversed if 
the underlying cause is addressed and the tissue remains 
undamaged. Intra-renal AKI, which accounts for 45% of 
cases, is characterized by significant alterations in the 
kidney’s structure or microscopic architecture and is not 
caused by urinary tract obstruction [33].

Any disease associated with ureteral obstruction can 
potentially trigger post-renal AKI. Hematomas within the 
renal pelvis or ureter, ureteral tumors, abdominal malig-
nancies, and bladder and prostate diseases are significant 
conditions. Collectively, they contribute to only 5% of 
AKI cases [32].

Although this classification can be useful to determine 
the differential diagnosis, AKI is characterized by vari-
ous factors and can be classified into different categories 
based on pathophysiology [34].

KTRs face an elevated risk of developing AKI during 
their stay in the intensive care unit, with a notable per-
centage necessitating renal replacement therapy. The 
process of kidney transplantation is identified as a signifi-
cant risk factor for the development of AKI. Factors that 
predispose individuals to this condition include differ-
ing extents of ischemia–reperfusion injury during organ 
removal and transplantation, long-term administration 
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of nephrotoxic calcineurin inhibitors, and the exist-
ence of a solitary functioning kidney [35]. The available 
data regarding the lifetime incidence of AKI in KTRs 
is limited and lacks clarity. It is estimated that approxi-
mately 6% of KTRs experience ICU admission during the 
delayed post-transplant phase [36].

By the way, sepsis and septic shock are commonly asso-
ciated with the development of AKI. Among the various 
causes of sepsis, urinary tract infections (UTIs) are nota-
ble, as they can lead to a rapid decline in renal function. 
UTIs may be asymptomatic or symptomatic, presenting 
a diverse array of symptoms that range from mild irrita-
tive voiding to severe conditions such as bacteremia, sep-
sis, shock, or even death. Sepsis is a leading cause of AKI, 
with around 60% of patients suffering from septic shock 
experiencing this renal complication. Additionally, acute 
UTIs can result in a sudden worsening of renal function, 
particularly in the presence of urinary tract obstruction 
[37].

Infections such as BKPyV can manifest in form of AKI 
by either direct invasion, or indirectly by immune-medi-
ated mechanisms [38].

Post kidney transplant AKI linked to BKPyV 
reactivation
AKI due to BKPyV infection affects up to 10% of trans-
plant recipients. BK nephropathy usually develops early 
post-transplant, often within the first year, and is driven 

by persistent high-level viral replication in an immuno-
suppressed environment [39]. The presence of BKPyV in 
KTRs most often induces UTIs which is the most com-
mon cause of AKI in KTRs [40]. In the case of kidney 
transplantation, BKPyV infection occurs in the trans-
planted kidney, and in other organs such as heart, liver, 
and  lung [6]. Also, tubulointerstitial nephritis (TIN) 
happens  when  an immune-mediated infiltration of the 
kidney, causes  inflammation and leads to kidney injury 
[41]. BKPyV causes tubulointerstitial nephritis, which 
leads to AKI and ureteral obstruction [4]. This review will 
describe the possible pathways that BKPyV reactivation 
triggers to produce AKI in KTRs, summarized in Fig. 2.

Signaling pathways
Signaling pathways such as NF-κβ and TGF-β signal-
ing can play important roles in BKPyV activity and the 
occurrence of AKI, which are discussed below.

NF‑κβ signaling
The activation of NF-κB during viral infections is seen 
as a defensive mechanism against viruses and is charac-
teristic of most viral infections because it enhances the 
expression of numerous proteins involved in both innate 
and adaptive immunity [42]. In some cases, viral mol-
ecules efficiently bind to receptors to trigger a signaling 
cascade that activates NF-κβ. In other cases, the activa-
tion of dsRNA-dependent protein kinase (PKR), which 

Fig. 1  Possible causes of AKI: The causes of AKI are typically divided into three main categories: pre-renal, intra-renal, and pos-trenal; pre-renal AKI 
is the most common type of AKI
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engages with the IKK complex via its catalytic domain 
and interacts with viral products like dsRNA and viral 
proteins, triggers NF-κB activation [42].

Once NF-κβ is activated, it triggers the production of 
antiviral substances such as type I IFNs and proinflam-
matory cytokines [43] through myeloid differentiation 
primary response 88 (MyD88) or TIR-domain-containing 
adapter-inducing interferon-β (TRIF) signaling pathways 
[44].

NF-κB is crucial as it enhances the production of 
chemokines, cytokines, adhesion molecules, and 
enzymes responsible for generating secondary inflamma-
tory mediators [45] and, it is closely linked to the onset of 
AKI [46]. Studies demonstrate that NF-κB is downregu-
lated by KIM-1-mediated epithelial cell phagocytosis, 
which can protect the kidney after ischemia- and cispl-
atin-induced AKI [47].

During AKI, NF-κB can induce an increase in the infil-
tration of M1 macrophages into the kidneys and cause 
more damage. In animal models, Mice are protected from 
kidney injury due to reduced NF-κβ activation, which 
leads to decreased cell death and chemokine expression 
(48). Hence, BKPyV infection can activate NF-κB which 
is one of the most important components of AKI patho-
genesis, and can lead to major signaling pathways that 
involve mostly in inflammation (Fig. 3).

TGF‑β signaling
TGF-β is produced by a variety of cells, includ-
ing kidney cells, where BKPyV reactivates. 

Immunosuppressive medications taken by KTRs 
increase the activity of TGF-β [49]. Likewise, TGF-β 
enhances the BKPyV gene’s activity, contributing to its 

Fig. 2  The possible ways that BKPyV reactivation can cause AKI in KTRs

Fig. 3  Activation of NF-κβ during BKPyV infection triggers 
the production of antiviral molecules such as type I IFNs 
and proinflammatory cytokines like TNF-α which causes an elevation 
in apo-A4 levels during AKI, that results in aggravated inflammation 
and harm to the kidney. This process also, induces an increase 
in the infiltration of M1 macrophages into the kidneys by NF-κβ 
activation that can cause more damages
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replication and subsequent reactivation in KTRs [49]. 
Researches revealed that when cells from individuals 
with BKPyV virus were activated, they produced IL-10 
and TGF-β [50]. As well, inhibition of UL16-binding 
protein 3 (ULBP3) by BKPyV, leads to the production of 
TGF-β in infected cells, which then interferes with the 
functioning of NK cells [51].

All three isoforms of TGF-β bind to the type II TGF-β 
receptor, a serine/threonine kinase. Upon binding of 
the ligand, the type II receptor forms a heterodimer 
with the transforming growth factor-β type I receptor 
(TGFβRI), leading to the activation of Smad-depend-
ent and independent pathways such as MAPK and 
GTPases, which subsequently modify gene expres-
sion. TGF-β is a crucial profibrotic growth factor that 
becomes activated in AKI [52].

In conclusion, BKPyV virus causes acute kidney 
injury through the upregulation of TGF-β, which leads 
to renal fibrosis and inflammation. BKPyV has been 
shown to enhance the activity of TGF-β, promoting 
its replication and reactivation within KTRs. As TGF-
Beta levels rise due to BKPyV infection, the delicate 
balance of kidney function is disrupted. cells infected 
with BKPyV produce high levels of TGF-β, which can 
interfere with the functioning of NK cells. This inter-
ference, along with the inhibition of ULBP3 by BKPyV, 
leads to further upregulation of TGF-β and exacerbates 
kidney injury. Smad3, a key mediator of TGF-β signal-
ing, plays a pathogenic role in renal inflammation and 
fibrosis [53]. Its interaction with cyclin-dependent 
kinase inhibitors (CDKIs) such as p21 and p27 can 
trigger tubular epithelial cell death by causing G1 cell-
cycle arrest. This process is crucial in the pathogenesis 
of AKI as it triggers cell death pathways [53]. Various 
activators of TGF-β, such as matrix metalloprotein-
ase and integrins, are upregulated in AKI, leading to 
increased TGF-β activation and subsequent tissue dam-
age. The TGF-β signaling pathways play a role in sus-
taining damage to the proximal tubule by encouraging 
de-differentiation, cell cycle arrest, and heightened vul-
nerability to apoptosis. Moreover, TGF-β signaling is 
involved in macrophage chemotaxis, endothelial injury, 
and myofibroblast differentiation following AKI [54] 
(Fig. 4).

Inflammatory mediators
Numerous cytokines secreted by leukocytes and renal 
tubular cells within the damaged kidney are crucial fac-
tors in the onset and advancement of AKI inflammation, 
as well as contributing to BKPyVAN allograft dysfunction 
in kidney transplant recipients  [55]. Some of the most 
critical cytokines are discussed below.

TNF‑α
TNF-α, a multifunctional cytokine, is recognized for its 
various impacts on the immune system, maintaining a 
balance between proinflammatory and immunosuppres-
sive effects. It plays a significant role in numerous types 
of renal inflammatory conditions. Although TNF-α is 
usually undetectable in normal kidneys, it is generated by 
most renal cells in the presence of inflammation. Mesan-
gial cells and tubular epithelial cells, as well as epithelial 
cells and podocytes demonstrates an elevation in TNF-α 
expression after being exposed to certain danger signals 
[56].

Human collecting duct epithelial cells (HCDCs) can 
react to BKPyV infection through the activation of viral 
receptors like TLR3 and RIG-I. This activation triggers 
an inflammatory pathway resulting in the production 
of proinflammatory cytokines and chemokines. These 
inflammatory mediators, in conjunction with their recep-
tors, play a crucial role in mounting an effective antiviral 
response. The TNF/TNFR system is often recognized as a 
key player in this antiviral activity [56].

In KTRs with BKPyV infection, the stimulation of 
TNF-α contributes to the replication of BKPyV, while 
the blockade of TNF-α suppresses viral replication, 

Fig. 4  BKPyV upregulates TGF-β; Smad3, an essential mediator 
of TGF-β signaling, promotes the expression of CDKIs like p21 
and p27, leading to tubular epithelial cell death through G1 cell-cycle 
arrest which significantly contributes to AKI by activating cell death 
pathways
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presenting a potential therapeutic approach. These find-
ings imply that neutralizing TNF-α could be a viable clin-
ical strategy for treating BKPyV infection [57].

CD8 + T cells are essential in BKPyV infection, leading 
to the development of BKPyV-specific T cells in circula-
tion and allograft tissue. Furthermore, the stimulation 
of VP1 and LT-Ag triggers the activation of numerous 
immune cells and cytokines, such as TNF-α, as the cas-
cade continues [44]. Oxidative stress plays a significant 
role in ischemic and cisplatin-induced injuries by activat-
ing the NF-κB transcription factor. This activation leads 
to the production of proinflammatory cytokines, such 
as TNF-α, which is observed through increased TNF-α 
mRNA levels in both ischemic and cisplatin-induced 
renal injuries [58]. TNF-α and its receptors, TNFR1 and 
TNFR2 exhibit significant expression levels during renal 
inflammation. Upon activation of TNF-α, TNFR1’s intra-
cellular portion interacts with TNF receptor-associated 
death domain (TRADD), which then recruits additional 
adaptor proteins [59]. TNF-α triggers an elevation in 
apo-A4 levels during AKI, resulting in aggravated inflam-
mation and harm to the kidney [60]. A study indicates 
that both LPS and intravenous TNF can lead to similar 
renal damage, including ultrastructural changes in the 
glomerular endothelial fenestrae and extensive modifi-
cations in the glomerular endothelial cell surface layer. 
These alterations increase albumin permeability and 
reduce GFR. The lack of these changes in the glomeru-
lar endothelial structure in LPS-treated Tnfr1 − / − mice, 
along with maintained GFR, highlights the crucial role 
of TNF-induced glomerular endothelial damage in LPS-
induced AKI and suggests its significant involvement in 
the development of sepsis-induced AKI [61].

In conclusion, TNF-α plays a critical role in mediating 
inflammatory responses in the kidney, including in the 
context of BKPyV-induced AKI.

IL‑6
Elevated levels of IL-6 and other proinflammatory 
cytokines were identified in kidney biopsies with BKPy-
VAN [62]. Moreover, a study indicated that IL-6 in urine 
rises with a high viral load of BKPyV infection [63]. The 
upregulation of IL-6 can be the result of TNF-α which 
has a role in BKPyV infection interacting with its recep-
tors. TNF-α can enhance inflammation in human kidney 
cells by elevating IL-6 levels and at the same time allows 
for an amplification of renal tubular response to viral 
infection [56].

On the other hand, recent research has revealed a 
strong association between the expression of IL-6 and 
the occurrence of AKI. During the experimentation 
on animals with ischemic AKI, it was observed that the 
transcription and signaling of IL-6 were increased both 

locally and systemically after 60 min of bilateral kidney 
ischemia suggesting that the IL-6 signaling pathway has 
the potential to serve as both a biomarker and a target 
for therapeutic interventions in ischemic AKI [64]. In 
cases of nephrotoxin-induced AKI, there is a significant 
increase in IL-6 expression within the kidney, particularly 
in the renal TECs. This increase is strongly associated 
with kidney damage and plays a crucial role in activating 
neutrophils, which is a key mechanism underlying AKI 
[64]. Early elevation of urine IL-6 has been observed in 
patients with AKI. Studies in animals indicate that the 
inability of proximal tubules to metabolize IL-6 leads to 
higher levels of IL-6 in both the bloodstream and urine 
which could potentially contribute to the adverse sys-
temic effects and heightened mortality rates associated 
with AKI [65].

IL-6 increases DNMT1 levels, leading to the meth-
ylation of FOXO3a and subsequent decrease in FOXO3a 
expression. FOXO3a inhibits the Wnt/β-catenin path-
way, thereby mitigating renal fibrosis in AKI. IL-6 pro-
motes renal fibrosis in AKI through the regulation of the 
DNMT1/FOXO3a/Wnt/β-catenin axis [11], highlighting 
the intricate role of IL-6 in the pathogenesis of AKI asso-
ciated with BKPyV infection. The mechanism by which 
BKPyV leads to AKI through IL-6 is complex and mul-
tifaceted. The virus triggers an immune response that 
results in the release of IL-6, which then causes damage 
to the kidneys, ultimately resulting in AKI (Fig. 5).

IL‑15
The upregulation of IL-15 expression by an infectious 
agent is essential for the activation of NK cells, CD8 T 
cells, and other immune system cells, allowing them 
to effectively eliminate pathogens. The availability of 
IL-15 can influence both innate and adaptive immune 
responses. [66]. BKPyV-infected endothelial cells exhibit 
a decrease in the expression of certain genes associ-
ated with the immune defense, such as IL-15, indicat-
ing the potential use of strategies by BKPyV to suppress 
the immune system by inhibiting the activation of genes 
involved in the anti-viral response[67]. Additionally, 
apoptosis plays a crucial role in the death of renal epi-
thelial cells (REC) and the loss of function during AKI in 
various experimental models, such as sepsis, ischemia–
reperfusion injury (IRI), cisplatin toxicity, mechani-
cal obstruction, and polycystic disease, exhibit similar 
apoptotic features including nuclear condensation, cas-
pase activation, DNA fragmentation, guanosine triphos-
phate (GTP) depletion, mitochondrial dysfunction, and 
the generation of reactive oxygen species [68]. IL-15’s 
protective effects were shown in three different tests for 
apoptosis, which show both early and late stages of cell 
death. Several kidney diseases that progress to fibrosis, 
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including acute interstitial nephritis, IgA nephropathy, 
and diabetic nephropathy, are also marked by an uneven 
ratio between IL-15 and TGF-β within the kidneys. Spe-
cifically, there is a decreased expression of IL-15 and an 
elevated expression of TGF-β [67].

In addition to its other functions, IL-15 can also hinder 
the formation of renal fibrosis. It opposes apoptosis and 
TGF-β induced-epithelial-mesenchymal transition in pri-
mary tubular epithelial cells through autocrine loops and 
membrane-bound forms. Moreover, IL-15 exhibits a pro-
tective effect on the kidneys in multiple in vivo models of 
acute renal injury by preventing cell death and mitigating 
inflammation through the inhibition of monocyte chem-
oattractant protein 1 (MCP-1) expression (69). Reduction 
of IL-15, along with the decrease in antifibrotic factors 
like BMP-7 and HGF, may serve as a pivotal event in the 
pathogenesis of renal fibrogenesis and acute and chronic 
kidney diseases [70].

the downregulation of IL-15 in AKI caused by the 
BKPyV can have detrimental effects on kidney function. 
IL-15 plays a crucial role in protecting the kidneys from 
apoptosis, inflammation, and fibrosis, and its reduction 

can contribute to the progression o f AKI to chronic kid-
ney disease. Therefore, the reduction in IL-15 expression 
as a result of BKPyV infection can cause AKI by increas-
ing apoptosis.

IL‑11
A recent study has highlighted the roles of IL-6 and IL-11, 
particularly in the context of inflammatory responses (0, 
3, 6, and 9 days post-infection) in the supernatants of the 
3D BKPyV cell culture using enzyme‐linked immuno-
sorbent assay (ELISA). Notably, IL‐11 showed a signifi-
cant increase during infection, making it an interesting 
therapeutic target. Additionally, treating the infected 3D 
cultures with a neutralizing IL‐11 antibody resulted in a 
substantial decrease in BKPyV copy rates in the treated 
cultures compared to the untreated ones [71].

Stimulation of tubular epithelial cells by IL-11 results 
in the inactivation of GSK3β through ERK- and p90RSK-
mediated pathways, leading to the upregulation of SNAI1 
and the expression of pro-inflammatory genes. In mice 
with AKI, IL-11 is upregulated in tubular epithelial cells, 
causing an increase in SNAI1 expression and kidney 
dysfunction. This effect is not observed in IL-11 deleted 
mice or mice treated with a neutralizing IL-11 antibody 
in either preemptive or treatment modes. Treatment with 
anti-IL11 in AKI reduces all pathological manifestations 
[72].

Upregulation of IL-11 in cells infected with BKPyV 
triggers the activation of ERK and p90RSK, leading to the 
phosphorylation of GSK3β at Thr43 and Ser9. This phos-
phorylation event results in the inactivation of GSK3β, 
which subsequently inhibits GSK3β-mediated SNAI1 
phosphorylation. Consequently, SNAI1 accumulates and 
suppresses the transcription of its target genes, such as 
E-Cadherin, potentially contributing to the development 
of AKI (Fig. 6).

Conclusion
BKPyV can lead to AKI, which has implications for both 
short- and long-term graft function and typically involves 
a mortality risk. BKPyV has the potential to induce the 
onset of TIN via inflammatory mechanisms, which 
have been documented in adult individuals experienc-
ing unexplained non-oliguric or AKI. The inflamma-
tory substances released by leukocytes and renal tubular 
cells during BKPyV infection can stimulate immune 
cell activation and the production of various cytokines. 
The molecular processes underlying the inflammation 
of leukocytes and renal tubular cells release a variety of 
cytokines in the context of kidney damage that has the 
potential to induce AKI. Additionally, signaling pathways 
such as TGF-β and NF-κβ, which are activated during 
viral infections, may contribute to AKI by heightening 

Fig. 5  During BKPyV infection, plenty of immune cells and cytokines 
are stimulated as the continuum cascades, including TNF-α that can 
enhance inflammation in human kidney cells by elevating IL-6 levels 
leading to elevation of DNMT1 to induce FOXO3a methylation 
and reduces FOXO3a expression. FOXO3a blocks the Wnt/
β-catenin pathway to alleviate renal fibrosis in AKI
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susceptibility to apoptosis and causing tissue damage. 
Detecting BKPyV infection at an early stage and promptly 
reducing immunosuppression can be a beneficial tactic in 
safeguarding the functionality of the allograft.
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GTP	� Guanosine triphosphate
MCP-1	� Of monocyte chemoattractant protein 1
ELISA	� Enzyme‐linked immunosorbent assay
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