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Abstract
Background The global prevalence of metabolic syndrome (MetS) in people living with HIV (PLWH) is on the rise 
in the post era of antiretroviral therapy (ART). Nevertheless, there are no validated predictive models available for 
assessing the risk of MetS in this specific population.

Methods This study included PLWH who participated in annual follow-ups at Southern Medical University Nanfang 
Hospital from September 2022 to November 2023. Participants enrolled in this study were divided into the training 
set and validation set based on the follow-up duration. We employed both multivariate logistic regression and 
lasso regression to develop three distinct prediction models. Subsequently, the optimal model was determined 
through comprehensive analyses, including receiver operating characteristic (ROC) curve analysis, calibration curve, 
and decision curve analysis (DCA). Ultimately, we generated a nomogram for the optimal model and analyzed the 
correlation between the model score and the components of MetS.

Results A total of 1017 participants were included in this study, with 814 in the training set and 203 in the validation 
set. The ultimate prediction model of MetS risk in PLWH incorporated five factors: age, CD8 + T cell counts, controlled 
attenuation parameter (CAP), gamma-glutamyl transferase (γ-GT) and lactate dehydrogenase (LDH). The area 
under the ROC curve (AUC) of the model in the training set and validation set was 0.849 and 0.834, respectively. 
Furthermore, we revealed a significant correlation between the model score and the MetS components. Additionally, 
the model score revealed significant group differences in MetS and related metabolic disorders.

Conclusions This study established a potential model for predicting MetS in PLWH.
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Introduction
The post antiretroviral therapy (ART) era has witnessed 
a remarkable increase in the life expectancy of people liv-
ing with HIV (PLWH) [1, 2]. However, this population is 
now confronted with age-related and antiretroviral treat-
ment-related complications such as metabolic disorders, 
renal impairment, osteoporosis, neurocognitive impair-
ment, and cardiovascular disease (CVD) [3–5]. Among 
these, the adverse prognostic implications associated 
with metabolic syndrome (MetS) are gradually emerging 
as a significant threat to the well-being of PLWH [6, 7].

MetS constitutes a complex interplay of components, 
encompassing abdominal obesity, impaired fasting glu-
cose (IFG), elevated blood pressure, hypertriglyceridemia 
(HTG), and low levels of high-density lipoprotein choles-
terol (HDL-C) [8]. Its primary clinical consequence is the 
occurrence of cardiovascular events, and it is intrinsically 
linked to an elevated risk of atherosclerosis and mortal-
ity [9, 10]. Immune activation and inflammation persist 
even with successful viral suppression from ART among 
PLWH, potentially leading to metabolic disturbances 
that contribute to MetS [11]. Additionally, the metabolic 
side effects of ART may exacerbate issues such as insulin 
resistance, dyslipidemia, and central obesity [12]. There-
fore, the combination of sustained low-level immune 
activation, the metabolic toxicity associated with ART, 
and intricate interactions involving traditional risk fac-
tors may collectively elevate the risk of MetS among 
PLWH [13, 14].

The identification and management of MetS have 
become a critical issue for PLWH receiving combina-
tion antiretroviral therapy [4]. Nevertheless, despite these 
challenges, there is still a lack of effective and viable mod-
els for predicting MetS in this population. Therefore, the 
primary objective of this study was to establish an effec-
tive MetS prediction model in PLWH through regres-
sion analysis of a large cohort. We aim for this model to 
provide a theoretical basis for clinical decision-making 
and the implementation of health interventions, ulti-
mately contributing to the reduction of poor prognosis in 
PLWH.

Methods
Study design
This cross-sectional study was conducted from Septem-
ber 2022 to November 2023 at Nanfang Hospital, affili-
ated with Southern Medical University. We included 
PLWH who participated in annual follow-ups during this 
period. Exclusion criteria encompassed individuals with 
(1) any history of cancer, (2) systemic infections, (3) preg-
nancy status, and (4) an absence of essential clinical data. 
Subsequently, the participant cohort was divided into the 
training cohort and the validation cohort based on fol-
low-up dates, with the first 80% assigned to the training 

cohort for model construction and the remaining 20% to 
the validation cohort for model evaluation.

Data collection
We systematically gathered demographic and clini-
cal information from the study participants. These data 
encompassed age, gender, body mass index (BMI), sys-
tolic blood pressure (SBP), diastolic blood pressure 
(DBP), the duration of ART, ART regimen, CD4 + T cell 
counts, CD8 + T cell counts, CD4/CD8 ratio, acquired 
immunodeficiency syndrome (AIDS) stage, white blood 
cell count (WBC), lymphocyte count (LYM), neutrophil 
count (NEU), monocyte count (MONO), eosinophil 
count (EOS), red blood cell count (RBC), hemoglobin 
(HGB), platelet count (PLT), alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), albumin (ALB), 
globulin (G), total bilirubin (TBIL), direct bilirubin 
(DBIL), alkaline phosphatase (ALP), gamma-glutamyl 
transferase (γ-GT), uric acid (UA), creatinine (CR), blood 
urea nitrogen (BUN), estimated glomerular filtration rate 
(eGFR), triglycerides (TG), total cholesterol (CHOL), 
HDL-C, low-density lipoprotein cholesterol (LDL-C), 
very low-density lipoprotein cholesterol (VLDL-C), fast-
ing blood glucose (FPG), glycosylated hemoglobin A1c 
(HbA1c), lactate dehydrogenase (LDH), hydroxybutyrate 
dehydrogenase (HBDH), creatine kinase (CK), creatine 
kinase myocardial band (CKMB), C-reactive protein 
(CRP), erythrocyte sedimentation rate (ESR). Concur-
rently, we conducted hepatic assessments on the par-
ticipants utilizing transient elastography. The controlled 
attenuation parameter (CAP) was to evaluate liver ste-
atosis and liver stiffness measurements (LSM) to assess 
liver fibrosis. The above data were sourced from medical 
records or databases.

Diagnosis of metabolic disorders
MetS was defined according to the International Diabe-
tes Federation (IDF) criteria [8], which require the pres-
ence of any three of the five following components: (1) 
TG levels ≥ 1.70 mmol/L or being on treatment for dys-
lipidemia. (2) Low HDL-C levels were defined as < 1.0 
mmol/L for men and < 1.3 mmol/L for women, or if the 
participant was receiving treatment for dyslipidemia. (3) 
Elevated blood pressure was defined as ≥ 130 mmHg and/
or DBP ≥ 85 mmHg or if the participant was using anti-
hypertensive medication. (4) FBG levels ≥ 5.6 mmol/L, 
a diagnosis of type 2 diabetes, or treatment with oral 
hypoglycemic agents. (5) Obesity was defined as waist 
circumference ≥ 90 cm for men or ≥ 80 cm for women, or 
BMI > 27.5 kg/m², based on the World Health Organiza-
tion guidelines for the Asian population [15, 16].

In addition, metabolic disorders associated with 
MetS were defined as follows: HTG was defined 
as TG ≥ 1.7mmol/L [17]. Low level of high-density 
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lipoprotein, also known as hypoalphalipoproteinemia 
(HA), was defined as HDL-C ≤ 1.03 mmol/L in men and 
≤ 1.29 mmol/L in women [18]. Hypertension was defined 
as ≥ 140 mmHg, and/or DBP ≥ 90 mmHg or if the par-
ticipant was using antihypertensive medication [19]. Ele-
vated fasting glucose includes diagnostic criteria for IFG 
and diabetes, defined as FPG ≥ 5.6mmol/L [20, 21].

Construction and evaluation of the prediction model
In our study, we performed univariate and multivariate 
binary logistic regression analyses in the training set to 
identify factors associated with MetS in PLWH. Variables 
directly related to the definition of MetS were excluded, 
while all other variables were included in the univari-
ate analysis. Variables demonstrating a p-value < 0.05 in 
the univariate analysis were subsequently incorporated 
into the multivariate model. The independent predictors 
identified through this process served as the foundation 
for Model 1. Subsequently, we applied Least Absolute 
Shrinkage and Selection Operator (LASSO) regression 
analysis, using the same set of variables as in the logis-
tic regression model. While cross-validation initially 
identified an optimal λ that selected a larger number of 
variables, we opted for a λ value that yielded the same 
number of variables as Model 1 to maintain model sim-
plicity and interpretability. This selection allowed us to 
construct Model 2 with a comparable level of complexity. 
Drawing from the insights of these two models, we devel-
oped a simplified prediction model, denoted as Model 3.

To evaluate and compare the predictive performance 
of these models, we generated receiver operating charac-
teristic (ROC) curves and calculated the area under the 
ROC curve (AUC). Furthermore, we employed calibra-
tion curves to assess the concordance between actual risk 
and predicted risk, and decision curve analysis (DCA) 
curves to ascertain the clinical net benefit. With the 
refinement of our optimal model, we created a nomo-
gram, which serves as a visual tool to enhance the repre-
sentation of its clinical utility.

Statistical analysis
In our analysis, variables with a normal distribution 
were presented as mean ± standard deviation, with com-
parisons between two groups conducted using Stu-
dent’s t-test. For non-normally distributed variables, the 
median (interquartile range) was used, and comparisons 
were made with the Mann-Whitney U test. Categori-
cal data were expressed as percentages and subjected to 
comparison through the Chi-square test or Fisher’s exact 
test. The relationship between model scores and clinical 
variables was explored using Pearson correlation analysis. 
It is noteworthy that all data analysis and graphical repre-
sentations were performed using R version 4.2.1.

Results
Characteristics of participants enrolled
According to the flowchart in Fig. 1, a total of 1017 par-
ticipants were ultimately included in the cohort, with 
814 in the training set and 203 in the validation set. The 
demographic and clinical characteristics of our cohort 
were presented in Table 1. Notably, no statistically signifi-
cant differences in clinical data were observed between 
the validation and training sets. Subsequently, when 
we grouped participants according to their MetS diag-
nosis as listed in Supplementary Table 1, several differ-
ences were observed between the Non-MetS and MetS 
groups, including, but not limited to, age (P < 0.001), BMI 
(P < 0.001), and CD8 + T cell counts (P < 0.001).

Regression analysis and model construction
We conducted both univariate and multivariate logistic 
regression analyses on the training set (Supplementary 
Table 2). The outcomes of these analyses revealed that 
age (OR = 1.062, P < 0.001), CAP (OR = 1.017, P < 0.001), 
and γ-GT (OR = 1.007, P = 0.002) were independent 
risk factors for MetS in PLWH, while CD4/CD8 ratio 
(OR = 0.431, P = 0.024) and CKMB (OR = 0.985, P = 0.021) 
were identified as protective factors. Based on these 
independent factors, we constructed Model 1 for MetS 
prediction.

Additionally, we employed LASSO regression analysis 
on the training set (Supplementary Fig. 1). Since Model 1 
comprised five variables, we selected the LASSO Model 
including five variables to build Model 2, which included 
age (OR = 1.065, P < 0.001), CD8 + T counts (OR = 1.001, 
P < 0.001), CAP (OR = 1.020, P < 0.001), γ-GT (OR = 1.008, 
P < 0.001), and LDH (OR = 1.008, P = 0.007). To stream-
line the model, common variables from both Model 1 
and Model 2 were extracted to form Model 3, which 
included age (OR = 1.059, P < 0.001), CAP (OR = 1.021, 
P < 0.001) and γ-GT (OR = 1.008, P < 0.001). Ultimately, 
we proposed three distinct models for predicting MetS 
in PLWH and provided their model score calculation for-
mulas separately (Table 2).

Model evaluation and nomogram of optimal model
To assess and compare the predictive performance of 
the three models in both the training and validation 
sets, we initiated our analysis with the construction of 
ROC curves (Fig. 2A-B) and calculated the correspond-
ing AUC values. In the training set, Model 1 achieved 
an AUC of 0.843, Model 2 achieved 0.849, and Model 
3 achieved 0.831. In the validation set, the AUC values 
were 0.829 for Model 1, 0.834 for Model 2, and 0.824 
for Model 3. These results indicated robust predictive 
capabilities for all three models, with Model 2 display-
ing the highest AUC in both sets. Additionally, we gener-
ated calibration curves (Fig. 2C-D), which demonstrated 



Page 4 of 12Chen et al. Virology Journal          (2024) 21:321 

a close alignment between predicted probabilities and 
actual probabilities, affirming the well-calibrated nature 
of the models. Furthermore, the DCA curves (Fig. 2E-F) 
provided evidence of substantial clinical benefit associ-
ated with the predictive models. Importantly, Model 2 
consistently outperformed the other models, exhibiting 
superior predictive performance in both the training and 
validation sets.

For the sake of enhanced clinical applicability and more 
intuitive representation, we formulated a nomogram for 
the optimal model (Fig.  3). The nomogram provided a 
practical tool for healthcare professionals, facilitating the 
estimation of the risk of developing MetS in PLWH.

Correlation between model score with components of 
MetS among PLWH
According to the formulation of the optimal model, we 
calculated the model score for the validation set. Subse-
quently, we carried out correlation analysis between the 

model score and each component of MetS (Fig. 4), which 
encompassed BMI (r = 0.661, P < 0.001), TG (r = 0.512, 
P < 0.001), HDL-C (r = -0.163, P = 0.020), SBP (r = 0.344, 
P < 0.001), DBP (r = 0.166, P = 0.018) and FPG (r = 0.237, 
P < 0.001). The results revealed a significant and note-
worthy correlation between the model score and each 
component of MetS, which underscored the utility of the 
model in effectively predicting and assessing the risk fac-
tors associated with MetS in PLWH.

The relationship between model score with metabolic 
disorders
Our analysis extended to the exploration of the relation-
ship between model score and MetS as well as associ-
ated metabolic disorders (Fig.  5). The results indicated 
significant differences in the model score when compar-
ing the training set and the validation set across groups 
with or without MetS (P < 0.001), obesity (P < 0.001), 
HTG (P < 0.001), HA (P < 0.05), IFG (P < 0.001), and 

Fig. 1 Study flow diagram. Abbreviations ROC, receiver operating characteristic; DCA, decision curve analysis; CAP, controlled attenuation parameter; 
γ-GT, gamma-glutamyl transferase; LDH, lactate dehydrogenase
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Characteristics Training, N = 814 Validation, N = 203 P value
Age, years 33 [27, 43] 34 [28, 44] 0.398
Gender, male 748 (91.89%) 188 (92.61%) 0.735
MetS 211 (25.92%) 50 (24.63%) 0.706
BMI, kg/m2 22.30 [20.02, 24.56] 22.23 [19.54, 24.28] 0.385
SBP, mmHg 125.00 [117.00, 133.00] 125.00 [117.00, 134.00] 0.833
DBP, mmHg 86.00 [80.00, 92.00] 86.00 [80.00, 91.00] 0.719
CD8 + T counts, cells/µl 729.50 [555.00, 942.00] 746.00 [539.50, 987.00] 0.505
CD4 + T counts, cells/µl 464.00 [329.00, 629.00] 465.00 [327.00, 631.00] 0.753
CD4/CD8 ratio 0.66 [0.44, 0.90] 0.64 [0.41, 0.91] 0.623
HAART Regimen 0.814
 DTG group 112 (13.76%) 27 (13.30%)
 B/T/F group 199 (24.45%) 52 (25.62%)
 EFV group 477 (58.60%) 115 (56.65%)
 LPV/r group 26 (3.19%) 9 (4.43%)
HAART duration, months 24 [12, 48] 24 [12, 48] 0.616
AIDS stage 398 (48.89%) 93 (45.81%) 0.432
CAP, dB/m 213.00 [191.00, 249.75] 211.00 [187.50, 241.00] 0.403
LSM, kPa 5.10 [4.40, 5.80] 5.10 [4.40, 5.90] 0.987
WBC, 109/L 6.08 [5.10, 7.03] 6.06 [5.17, 7.05] 0.706
LYM, 109/L 1.99 [1.60, 2.46] 1.99 [1.65, 2.48] 0.634
NEU, 109/L 3.37 [2.69, 4.21] 3.30 [2.81, 4.08] 0.964
MONO, 109/L 0.40 [0.32, 0.49] 0.40 [0.34, 0.50] 0.227
EOS, 109/L 0.10 [0.06, 0.17] 0.10 [0.06, 0.18] 0.909
RBC, 1012/L 4.85 [4.52, 5.14] 4.81 [4.52, 5.14] 0.595
HGB, g/L 151.00 [142.00, 159.00] 151.00 [141.00, 159.50] 0.979
PLT, 109/L 239.50 [202.00, 276.75] 238.00 [205.00, 274.50] 0.977
ALT, U/L 23.00 [16.00, 34.75] 20.00 [15.50, 32.00] 0.108
AST, U/L 21.00 [18.00, 27.00] 20.00 [17.00, 25.50] 0.24
ALB, g/L 47.00 [44.90, 48.90] 46.90 [44.95, 48.50] 0.351
G, g/L 27.70 [25.00, 30.90] 27.30 [24.50, 30.60] 0.234
TBIL, µmol/L 7.70 [5.20, 11.10] 7.20 [5.35, 10.95] 0.671
DBIL, µmol/L 3.10 [2.40, 4.10] 3.10 [2.40, 4.05] 0.801
ALP, U/L 88.00 [70.25, 111.00] 87.00 [71.00, 109.50] 0.689
γ-GT, U/L 32.00 [21.25, 50.00] 30.00 [20.50, 47.00] 0.382
UA, µmol/L 370.50 [316.00, 437.00] 368.00 [308.50, 430.50] 0.841
CR, µmol/L 81.00 [70.00, 90.75] 78.00 [69.50, 90.00] 0.365
BUN, mmol/L 4.40 [3.70, 5.20] 4.30 [3.70, 5.30] 0.964
eGFR, mL/min/1.73m2 105.88 [92.66, 117.03] 106.06 [91.26, 117.68] 0.715
TG, mmol/L 1.28 [0.90, 2.07] 1.23 [0.85, 1.88] 0.277
CHOL, mmol/L 4.34 [3.78, 4.96] 4.41 [3.74, 4.98] 0.551
HDL-C, mmol/L 1.10 [0.97, 1.28] 1.13 [0.95, 1.30] 0.777
LDL-C, mmol/L 2.70 [2.27, 3.18] 2.72 [2.18, 3.16] 0.639
VLDL-C, mmol/L 0.45 [0.28, 0.67] 0.48 [0.33, 0.66] 0.476
FPG, mmol/L 5.14 [4.82, 5.53] 5.21 [4.84, 5.58] 0.248
HbA1c, % 5.40 [5.10, 5.70] 5.40 [5.10, 5.70] 0.406
LDH, U/L 162.00 [146.00, 180.00] 163.00 [146.00, 179.00] 0.853
HBDH, U/L 122.00 [109.00, 136.00] 118.00 [106.00, 135.00] 0.072
CK, U/L 107.00 [82.00, 144.00] 112.00 [84.00, 147.50] 0.279
CKMB, U/L 23.50 [14.00, 41.00] 25.00 [14.00, 45.50] 0.357

Table 1 Characteristics of participants or the training and validation cohorts
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hypertension (P < 0.05). These findings collectively under-
scored the efficacy of the model in effectively predicting 
and discerning metabolic-related conditions in PLWH.

Discussion
In this study, we divided the cohort of 1017 participants 
into training and validation cohorts. Employing both 
multivariate logistic regression and Lasso regression, 
we systematically constructed predictive models. These 
models were rigorously evaluated for sensitivity, speci-
ficity, and calibration to determine the best model for 
further development into a nomogram scoring system. 
Furthermore, we delved into the correlation analysis 
between model score and the components of MetS. Our 
investigation also extended to the relationship between 
model score and related metabolic disorders. The final 
risk score model incorporated five robust risk predictors: 
age, CD8 + T counts, CAP, γ-GT, and LDH. Notably, our 
model differed from those predicting MetS in the general 

population by incorporating the CD8 + T cell counts, 
which accounted for the complex interplay between 
inflammation and immunosuppression and their poten-
tial role in metabolic disease in PLWH.

Researchers suggest that age-related diseases are pri-
marily driven by chronic inflammation and immune sys-
tem activation, which are commonly observed in older 
adults [22]. These factors play a significant role in the 
development of cardiovascular diseases and MetS [23–
25]. The increased life expectancy has exposed PLWH to 
the effects of aging itself, which was defined as “inflam-
matory AIDS” towards the later stage of HIV infection 
[26]. In parallel, our findings emphasized the potential 
of age as a predictor of MetS in PLWH, aligning with the 
conclusions of other researchers.

It has been reported that the CD4/CD8 ratio has 
emerged as a potential indicator for predicting MetS in 
individuals with HIV/AIDS [27–29]. Additionally, some 
researchers have suggested that elevated CD8 + T cell 

Table 2 The models for predicting MetS in PLWH
Models Variables B SE Wald OR (95% CI) P value
Model 1 (Intercept) -7.379 0.668 11.050

Age 0.060 0.008 7.253 1.062 (1.045–1.079) < 0.001
CD4/CD8 ratio -0.945 0.302 -3.133 0.389 (0.212–0.691) 0.002
CAP 0.020 0.002 9.322 1.020 (1.016–1.024) < 0.001
γ-GT 0.009 0.002 4.902 1.009 (1.006–1.013) < 0.001
CKMB -0.014 0.006 -2.502 0.986 (0.975–0.997) 0.012
Model score = -7.379 + 0.060*Age − 0.945*CD4/CD8 ratio + 0.020*CAP + 0.009*γ-GT − 0.014*CKMB

Model 2 (Intercept) -10.781 0.856 12.598
Age 0.063 0.009 7.351 1.065 (1.048–1.083) < 0.001
CD8 + T counts 0.001 0.000 4.126 1.001 (1.001–1.002) < 0.001
CAP 0.019 0.002 9.064 1.020 (1.015–1.024) < 0.001
γ-GT 0.008 0.002 4.254 1.008 (1.004–1.012) < 0.001
LDH 0.008 0.003 2.712 1.008 (1.002–1.014) 0.007
Model score = -10.781 + 0.063*Age + 0.001*CD8 + T counts + 0.019*CAP + 0.008*γ-GT + 0.008*LDH

Model 3 (Intercept) -8.510 0.622 13.678
Age 0.058 0.008 7.185 1.059 (1.043–1.076) < 0.001
CAP 0.021 0.002 10.046 1.021 (1.017–1.025) < 0.001
γ-GT 0.008 0.002 4.343 1.008 (1.004–1.012) < 0.001
Model score = -8.510 + 0.058*Age + 0.021*CAP + 0.008*γ-GT

Abbreviations: CAP, controlled attenuation parameter; γ-GT, gamma-glutamyl transferase; CKMB, creatine kinase myocardial band; LDH, lactate dehydrogenase

Characteristics Training, N = 814 Validation, N = 203 P value
CRP, mg/L 1.02 [0.50, 2.34] 1.03 [0.56, 2.86] 0.319
ESR, mm/1 h 5.00 [3.00, 10.00] 5.00 [4.00, 10.00] 0.397
Continuous variables are presented as Median [Interquartile Range] (IQR), and categorical variables are presented as N (%)

Abbreviations: MetS, metabolic syndrome; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HAART, highly active antiretroviral 
therapy; DTG, dolutegravir group; B/F/T, Bictegravir group; EFV, Efavirenz group; LPV/r, lopinavir/ritonavir group; AIDS, acquired immunodeficiency syndrome; CAP, 
controlled attenuation parameter; LSM, liver stiffness measurement; WBC, white blood cell count; LYM, lymphocyte count; NEU, neutrophil count; MONO, monocyte 
count; EOS, eosinophils count; RBC, red blood cell count; HGB, hemoglobin; PLT, platelets count; ALT, alanine aminotransferase; AST, aspartic aminotransferase; ALB, 
albumin; G, globulin; TBIL, total bilirubin; DBIL, direct bilirubin; ALP, alkaline phosphatase; γ-GT, gamma-glutamyl transferase; UA, uric acid; CR, creatinine; BUN, 
blood urea nitrogen; eGFR, estimated glomerular filtration rate; TG, total triglycerides; CHOL, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, 
low-density lipoprotein cholesterol; VLDL-C, very low-density lipoprotein cholesterol; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin A1c; LDH, lactate 
dehydrogenase; HBDH, hydroxybutyrate dehydrogenase; CK, creatine kinase; CKMB, creatine kinase myocardial band; CRP, C-reactive protein; ESR, erythrocyte 
sedimentation rate

Table 1 (continued) 



Page 7 of 12Chen et al. Virology Journal          (2024) 21:321 

Fig. 2 Performance evaluation of the models. (A) ROC curve for predictive models in the training cohort. (B) ROC curve for predictive models in the 
validation cohort. (C) Calibration plot of models in the training cohort. (D) Calibration plot of models in the validation cohort. (E) DCA curve of models in 
the training cohort. (F) DCA curve of models in the validation cohort
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Fig. 4 Correlation between model score with MetS components among PLWH in the validation cohort. The Scatter plots of model score and BMI (A), TG 
level (B), HDL-C level (C), SBP level (D), DBP level (E), and FPG level (F). Abbreviations: BMI, body mass index; TG, total triglycerides; HDL-C, high-density 
lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose

 

Fig. 3 Nomogram of the optimal model. This nomogram illustrates the predictive model for MetS in PLWH. To use the nomogram, find each variable’s 
value (e.g., age, CD8 + T cell count, CAP, γ-GT, and LDH) on its respective axis and draw a line upward to get the corresponding points. Sum all points and 
locate the total score on the “Sum of all points” axis. This total score maps to a predicted risk of MetS on the bottom scale, with higher scores indicating 
a greater risk. Abbreviations: CAP, controlled attenuation parameter; γ-GT, gamma-glutamyl transferase; LDH, lactate dehydrogenase; MetS, metabolic 
syndrome; PWLH, people living with HIV
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counts may constitute a moderate risk factor for stroke 
in PLWH [27, 30]. In addition, elevated CD8 + T cell 
counts have been closely associated with immunosenes-
cence in PLWH, suggesting that CD8 + T cells may play 
a pivotal role in linking immunosenescence with meta-
bolic disorders [31]. Notably, in our study, we observed a 
significant difference in CD8 + T cell counts between the 
non-MetS and MetS groups in PLWH, and CD8 + T cell 
counts were also identified as independent predictors in 
our predictive model. This finding supports the potential 
of CD8 + T cells as a risk marker for MetS in PLWH and 
provides a direction for future research to explore the 
role of CD8 + T cells in predicting and managing MetS in 
this population.

γ-GT is widely used as a diagnostic marker for liver 
diseases [32], but increasing evidence suggests that it 
also plays an important role in cardiometabolic diseases 
such as obesity, hypertension, and diabetes [33]. Elevated 
γ-GT levels have been identified as predictive of the 

occurrence of MetS, CVD events and mortality [34–36]. 
Independent studies by Nguyen and Fourie have con-
curred that γ-GT is also linked to CVD risk in PLWH 
populations [37, 38]. In this study, γ-GT emerged not 
only as an independent risk factor for MetS in PLWH but 
also as one of the key elements in the predictive model, 
further highlighting its significance in predicting MetS 
occurrence in this population. Nevertheless, we acknowl-
edge that elevated γ-GT may be a result of metabolic syn-
drome rather than a cause.

Elevated LDH indicates a pathological condition of 
acute tissue or cell injury [39, 40]. Previous studies 
have shown an association between elevated LDH and 
MetS, with LDH levels being closely related to frailty 
and all-cause mortality [39, 41]. Some researchers have 
also proposed that LDH tests can be utilized to moni-
tor HIV disease progression and treatment response 
[42]. Although elevated LDH levels may be a conse-
quence rather than a cause of metabolic syndrome, LDH 

Fig. 5 The model score between metabolic disorders among PWLH. (A) The model score in PLWH between Non-MetS group and MetS group. (B) The 
model score in PLWH between Non-Obesity group and Obesity group. (C) The model score in PLWH between Non-HTG group and HTG group. (D) The 
model score in PLWH between Non-HA group and HA group. (E) The model score in PLWH between Non-IFG group and IFG group. (F) The model score 
in PLWH between Non-Hypertension group and Hypertension group. Abbreviations: MetS, metabolic syndrome; HTG, hypertriglyceridemia; HA, hypoal-
phalipoproteinemia; IFG, impaired fasting glucose
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emerged as a predictor of MetS in the PLWH population 
in this study, suggesting its potential as a biomarker for 
MetS in this group. However, further longitudinal stud-
ies are needed to clarify the causal relationship between 
LDH and MetS in PLWH.

In recent years, Fibroscan has emerged as a widely 
adopted diagnostic tool, primarily employed for the pre-
diction of fatty liver and liver fibrosis in diverse popula-
tions. Notably, previous studies have reported the use 
of a combination of CAP and LSM for the prediction of 
nonalcoholic steatohepatitis or liver fibrosis, particu-
larly in PLWH or those coinfected with HCV [43–45]. 
However, the role of CAP and LSM in predicting MetS 
has been relatively underexplored. Our findings suggest 
that CAP may serve as a valuable predictive marker for 
MetS in PLWH, which could have important implications 
for the management and prognosis of this population. 
Nonetheless, we acknowledge that elevated CAP might 
also reflect the presence of fatty liver as a consequence of 
MetS, rather than serving as a causal factor. Further lon-
gitudinal studies are needed to clarify the directionality 
of this association.

Our study possesses several strengths. Firstly, it pro-
poses a model that may assist in identifying MetS in 
PLWH, offering clinicians a possible tool to help assess 
MetS risk and inform early intervention strategies. Sec-
ondly, this study uniquely integrates a multivariate 
prediction model that considers patient-host character-
istics specific to PLWH, revealing potential associations 
between new variables and MetS in this population. 
Nonetheless, we acknowledge certain limitations in our 
study. Firstly, as this is an exploratory analysis, we did 
not adjust for multiple comparisons across the vari-
ables examined, which may increase the likelihood of 
false positives. Additionally, its retrospective nature may 
be subject to inherent limitations associated with this 
study design, as some observed associations may repre-
sent consequences rather than contributing factors to 
metabolic syndrome. Future research should focus on 
conducting longitudinal studies to assess the model’s pre-
dictive effectiveness over time. Finally, our model lacks 
external validation using data from independent sources, 
underscoring the need for further research to confirm its 
robustness across diverse cohorts.

Conclusions
In conclusion, our study provides a potential model for 
assessing the risk of MetS in PLWH, further research is 
needed to validate its predictive capacity and explore the 
causal relationships underlying these associations.
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