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Abstract 

Background Respiratory infectious diseases have the highest incidence among infectious diseases worldwide. 
Currently, global monitoring of respiratory pathogens primarily focuses on influenza and coronaviruses. This study 
included influenza and other common respiratory pathogens to establish a local respiratory pathogen spectrum. 
We investigated and analyzed the co-infection patterns of these pathogens and explored the impact of lifting non-
pharmaceutical interventions (NPIs) on the transmission of influenza and other respiratory pathogens. Additionally, 
we used a predictive model for infectious diseases, utilizing the commonly used An autoregressive comprehensive 
moving average model (ARIMA), which can effectively forecast disease incidence.

Methods From June 2023 to February 2024, we collected influenza-like illness (ILI) cases weekly from the commu-
nity in Xuanwu District, Nanjing, and obtained 2046 samples. We established a spectrum of respiratory pathogens 
in Nanjing and analysed the age distribution and clinical symptom distribution of various pathogens. We compared 
age, gender, symptom counts, and viral loads between individuals with co-infections and those with single infections. 
An autoregressive comprehensive moving average model (ARIMA) was constructed to predict the incidence of res-
piratory infectious diseases.

Results Among 2046 samples, the total detection rate of respiratory pathogen nucleic acids was 53.37% (1092/2046), 
with influenza A virus 479 cases (23.41%), influenza B virus 224 cases (10.95%), and HCoV 95 cases (4.64%) being pre-
dominant. Some pathogens were statistically significant in age and number of symptoms. The positive rate of mixed 
infections was 6.11% (125/2046). There was no significant difference in age or number of symptoms between co-
infection and simple infection. After multiple iterative analyses, an ARIMA model (0,1,4), (0,0,0) was established 
as the optimal model, with an  R2 value of 0.930, indicating good predictive performance.

Conclusions The spectrum of respiratory pathogens in Nanjing, Jiangsu Province, was complex in the past. The 
primary age groups of different viruses were different, causing various symptoms, and the co-infection of viruses did 
not correlate with the age and gender of patients. The ARIMA model estimated future incidence, which plateaued 
in subsequent months.
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Introduction
Global Burden of Disease (GBD) studies show that res-
piratory infectious diseases cause approximately 145,000 
deaths globally every year [1]; in 2019, the number of 
cases of upper respiratory tract infection was as high as 
17.2 billion, accounting for 42.83% of all disease cases 
in the GBD database. The incidence rate was the high-
est [2], posing a massive threat to global human health. 
Currently, respiratory tract infections rank second in the 
worldwide burden of disease among children and ado-
lescents, making it one of the leading causes of rising 
morbidity and mortality worldwide [3]. The susceptible 
population of respiratory infectious diseases is broad, 
and the transmission route is easy to achieve, often 
caused by a variety of pathogens. The infection situation 
is complex and frequently overlapping, so detection is 
usually tedious [4]. Currently, there is more research in 
China on monitoring and controlling novel coronaviruses 
and influenza viruses [5, 6], with less focus on monitor-
ing other pathogens. This study conducts multi-patho-
gen testing on feverish populations in Xuanwu District, 
Nanjing City, establishes a local respiratory pathogen 
spectrum, understands the epidemiological patterns of 
pathogens, and provides more basis for diagnosing and 
treating respiratory infections in patients with unknown 
pathogens in clinical practice.

From 2019 to 2023, the world experienced a pandemic 
of the novel coronavirus (COVID-19). As the viru-
lence of COVID-19 weakened, community transmission 
decreased, and vaccination coverage became more wide-
spread, the severity of COVID-19 appeared to decline. 
However, it still poses a threat due to its strong infectiv-
ity [7]. In recent years, China and other countries have 
explored the impact of non-pharmaceutical interven-
tions (NPIs) [8–10] related to novel coronavirus on the 
prevalence of respiratory infectious diseases. NPIs refer 
to measures to delay the spread of epidemics in addition 
to vaccination and taking drugs, which aim to reduce the 
spread of infectious diseases by minimizing the exposure 
rate of the general population [11–13]. These measures 
include wearing masks, washing hands frequently, open-
ing windows for ventilation, social distancing, closing 
schools, businesses and other social places, and canceling 
large public gatherings. The application of these measures 
has dramatically reduced the morbidity of Acute respira-
tory infectious disease. However, most studies did not 
include the period after NPIS were gradually lifted. We 
analyzed the alterations in the prevalence trends of influ-
enza and other respiratory pathogens after the removal 
of NPIs, aiming to assess the potential ramifications of 
easing such restrictions on other respiratory infectious 
diseases. Collecting the current spectrum of respiratory 
pathogens can prevent and control the present and future 

respiratory infectious diseases, and help provide more 
reference opinions for public health decision-making.

In epidemiology, modeling technology is commonly 
used for early prediction and warning of infectious dis-
eases [14, 15]. Box and Jenkins proposed the Autore-
gressive Integrated Moving Average (ARIMA) model in 
1976 [16]. The ARIMA model is a time series forecast-
ing method that analyses time series to make short-term 
predictions. It has been used to predict hand, foot, and 
mouth disease, COVID-19, Hepatitis B, etc. In previous 
studies, some scholars found that the ARIMA model was 
superior to other models.

In conclusion, in this study, we chose the ARIMA 
model to predict the number of future infectious diseases 
in Nanjing. Establishing effective and accurate predic-
tive models to forecast the future trends of respiratory 
tract infections in the Xuanwu District of Nanjing City 
can play a role in early warning and monitoring. This can 
provide data support for formulating response strate-
gies and implementing prevention and control measures, 
transitioning from passive to active prevention.

Methods
Study design and participant enrollment
The study was conducted in Xuanwu District, Nanjing 
City, from June 2023 to February 2024, jointly carried 
out by the Jiangsu Provincial Center for Disease Control 
and Prevention (Jiangsu CDC) and the Xuanwu District 
Center for Disease Control and Prevention in Nanjing 
City. A weekly collection of influenza-like cases with res-
piratory infections such as fever (temperature ≥ 37  °C) 
accompanied by cough or sore throat was done from the 
community. The study was approved by the Institutional 
Review Board of Jiangsu CDC (No. JSJK2022-B016-02). 
All participants have provided written informed consent 
for demographic characteristics, physical examinations, 
medical records, and sample tests.

Pathogen detection
Throat swab specimens during the acute phase were col-
lected from patients (not less than 40 samples per week) 
by professional personnel following standard operating 
procedures. The specimens were immediately placed in 
sterilized sampling tubes containing 3  ml of sampling 
fluid and transported to the Jiangsu Provincial Center for 
Disease Control and Prevention laboratory within 48  h 
under 4 °C conditions for testing.

Nucleic Acid Extraction: Nucleic acids were extracted 
using the Rapid Viral Nucleic Acid Extraction Kit (manu-
factured by Tianlong Science and Technology Co., Ltd., 
Xi’an, China), with the extraction process carried out 
using the Tianlong GeneRotex 96 Automatic Nucleic 
Acid Extractor, following the manufacturer’s instructions. 
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Nucleic Acid Detection: The nucleic acids of respiratory 
pathogens were detected using the 16 Respiratory Path-
ogens Nucleic Acid Detection Kit (produced by Biotech 
Co., Ltd., Beijing, China) through real-time quantitative 
PCR. PCR amplification was performed according to the 
kit instructions, and results were determined accordingly.

These respiratory pathogens mainly included influ-
enza A (Flu A), influenza B (Flu B), respiratory syncyt-
ial virus(RSV), Herpes simplex virus (HSV), human 
adenovirus (HADV), Enteroviruses (EV), human coro-
navirus (HCoV), Parainfluenza virus (HPIV), Human 
rhinovirus (HRV), human Bocavirus (HBoV), Human 
metapneumovirus (HMPV), Streptococcus pneumoniae 
(S. pneumoniae), Haemophilus influenzae(H.influenzae), 
Mycoplasma pneumoniae (M. Pneumonia). Chlamydia 
pneumoniae (C. pneumoniae).

This study conducted a pathogen composition analysis 
of various respiratory pathogens, identifying the predom-
inant pathogen genotypes to provide a basis for further 
control of respiratory infectious diseases. For EV and 
HRV typing, the respiratory multi-pathogen detection 
kit (Shuo Shi, JC20302) is used for initial RNA screen-
ing from the specimens. Positive samples for enterovi-
rus detection undergo serotyping using the enterovirus 
71 type, coxsackievirus (CV) A16 type RNA detection 
kit (Shuo Shi, JC20302), and CV A6 type, A10 type RNA 
detection kit (Shuo Shi, JC20205). Non-EV71/CVA16/
CVA6/CVA10 specimens undergo sequencing typing, 
with amplification primer sequences as follows: OL68-
1:5′-GGT AAY TTC CAC CACCANCC-3′ and  EVP2:5′- 
CCT CCG GCC CCT GAA TGC GGC TAA T-3’. PCR 
reaction conditions are set at 50 °C for reverse transcrip-
tion for 30  min, 95  °C for denaturation for 15  min, fol-
lowed by 35 cycles of 95 °C for 30 s, 52 °C for 45 s, 72 °C 
for 90  s, and a final extension at 72  °C for 5  min. The 
amplified products are validated using QIAxcel capillary 
electrophoresis before being sent to Shanghai Sangon 
Biotechnology Co., Ltd. for sequencing.

Results were double-entered by two experimenters 
using Epidata, including sample number, nucleic acid test 
result (positive/negative), viral load, date of testing, and 
clinical symptoms to ensure data accuracy. Data were 
analyzed using GraphPad Prism 9.5.0 and SPSS version 
27.0 software (IBM, New York, USA).

ARIMA model
The ARIMA model, as one of the standard methods in 
time series analysis, reflects the development trend of 
time series data from the perspective of autocorrela-
tion. It combines three components, autoregressive (AR), 
differencing (I), and moving average (MA), to capture 
trends and seasonal information in time series data. The 
order of the autoregressive and moving average parts 

is ’p’ and ’q,’ represented by AR (p) and MA (q) respec-
tively, and ’d’ is the number of differences (order) made to 
make them a stationary series. This study constructed an 
ARIMA model based on weekly incidence data from June 
2023 to February 2024. The Augmented Dickey-Fuller 
(ADF) test was performed using Eviews 12.0 and SPSS 
27.0 for processing.

Methods of ARIMA model construction [17–19]:

(1) Data Pre-processing: The data were checked for 
missing values and imputed where necessary. The 
weekly number of respiratory pathogen incidents 
was then imported as raw data to create a time 
series.

(2) Stationarity of the Series: Before applying the 
ARIMA model, assessing the stationarity of the 
time series is crucial. Stationarity was initially eval-
uated using a scatterplot, the autocorrelation func-
tion (ACF), and the partial autocorrelation function 
(PACF). The ADF test was conducted using Eviews 
12.0 software to confirm stationarity. The series 
appeared to stabilize after first-order differencing, 
while seasonal differencing led to instability, con-
firming stationarity in conjunction with the ADF 
unit root test.

(3) Determine ARIMA Model Parameters: The param-
eters of the ARIMA model were determined by 
observing the PACF to identify the p-value (the 
order of the autoregressive term), the ACF to iden-
tify the q-value (the order of the moving average 
term), and the differencing order to determine the 
d-value (the number of differencing required).

(4) Construct the ARIMA Model: The appropriate time 
series model was constructed based on the iden-
tified characteristics. ACF and PACF plots were 
generated, and first-order differencing indicated 
zero-lag autocorrelation and partial autocorrela-
tion. The best-fitting model was selected using the 
Akaike Information Criterion (AIC) and the Bayes-
ian Information Criterion (BIC). By testing different 
combinations of p, d, and q values, the model with 
the lowest AIC and BIC was chosen.

(5) Model Validation: After selecting the final model, 
the Ljung-Box test was used to check whether the 
residual sequence constituted white noise. The 
residuals should be statistically insignificant in the 
residual correlation test, confirming that they are 
white noise. If residual autocorrelation is detected, 
the model should be re-evaluated and adjusted until 
white noise is confirmed.

(6) Prediction Using the Validated Model: The vali-
dated model was then used for prediction. Model 
fit was evaluated by checking whether the actual 
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values fell within the 95% confidence interval of the 
predicted values or by assessing the mean absolute 
percentage error (MAPE).

Results
Demographic results
Samples were collected weekly from June 2023 to Feb-
ruary 2024, totaling 2046 samples. Among them, 1092 
samples tested positive, resulting in an overall positive 
rate of 53.37%. The mean age was 36.8 ± 20.6 years, with 
the highest number of individuals in the 14–59 age group 
(733, 67.12%). There were 467 males (42.77%) and rela-
tively more females (625, 57.23%). Among them, 125 indi-
viduals tested positive for mixed infections, accounting 
for 11.45%, while 968 individuals had single infections, 
accounting for 88.48%. The most common symptoms 
were cough 874 cases (79.60%), Sore throat 640 cases 
(58.29%), and Fatigue 516 cases (46.99%) (Table 1).

Respiratory virus infection rate
The most common pathogen was Flu A, with a positive 
rate of 23.41% (479 cases) (Fig. 1), all of which were H3N2 
subtypes. This was followed by Flu B at 10.95% (224 
cases), all typed as B.Victoria. HCoV accounted for 4.64% 
(95 cases), including 33 cases of HCoV-229E, 50 cases 
of HCoV-OC43, 11 cases of HCoV-HKU1, and 1 case 
of HCoV-NL63. HRV accounted for 4.06% (83 cases), 
sequencing of rhinovirus with simple infection, includ-
ing 18 cases of Rhinovirus A, 3 cases of Rhinovirus B, and 
17 cases of Rhinovirus C. HMPV accounted for 3.81% 
(78 cases). HPIV accounted for 3.2% (65 cases), RSV for 
2.25% (46 cases) (including 14 cases of RSVA ON1 and 
32 cases of RSVB BA9), HADV for 2.0% (41 cases), HSV 
for 1.2% (29 cases), EV for 0.24% (5 cases) (including 1 
case of CVA21, 3 cases of CVA6, and 1 case of D68). M. 

Table 1 Demographic and Clinical Characteristics of Positive 
Cases

Variable N (%)

Mean Age ± SD 36.8 ± 20.6 years

Age group

 < 14 148(13.55)

14–59 733(67.12)

 > 59 211(19.32)

Gender

Male 467(42.77)

Female 625(57.23)

Pathogen detection

Simple infection 967(88.55)

Mixed infection 125(11.45)

Clinical Symptoms

Cough 874(79.60)

Headache 479(43.62)

Sore throat 640(58.29)

Muscle pain 346(31.51)

Nasal congestion 388(35.34)

Runny nose 504(45.90)

Fatigue 516(46.99)

Fig. 1 Weekly positive detection rate of respiratory pathogens from week 25, 2023 to week 9, 2024
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Pneumonia accounted for 1.08% (22 cases), H. influenzae 
for 0.7% (15 cases), S. pneumoniae for 0.34% (7 cases), 
HBoV for 0.1% (2 cases), and C. pneumoniae for 0.1% (2 
cases). M.  Pneumonia, and HADV infections are more 
common in children under 14 years old. In contrast, Flu 
A, Flu B, HCoV, and HRV infections mainly occur in the 
14–59 age group, with elderly individuals being more 
susceptible to HMPV infections (Table 2).

Except for RSV, all other pathogens can cause symp-
toms such as cough, headache, sore throat, muscle pain, 
nasal congestion, runny nose, and fatigue. Among these, 
H. influenzae  (43, 21.83%), HMPV (59, 24.08%), HADV 
(38, 30.16%), Flu A (380, 22.77%), HPIV (23, 23.96%), and 
HCoV (165, 24.59%) infections commonly present with 
cough as the predominant symptom. HPIV (20, 20.83%) 
is the pathogen most likely to cause sore throat, while 
runny nose is most commonly associated with HADV 
infection (21, 16.67%). Please refer to Table 3 for details.

The positive rate for mixed infections was 6.11% (125 
out of 2046), with double infection accounting for 5.82% 
(119/2046), triple infection for 0.24% (5/2046), and quad-
ruple infection for 0.05% (1/2046). The detection rate of 
Flu A + HRV is the highest in mixed infections at 20.69% 
(24 cases) followed by FluA + HCoV at 8.62%, (10 cases) 
and FluA + HSV at 11.11% (9 cases) (Fig.  2). Flu A was 
mostly co-infected with other pathogens. Simultaneous 
or sequential infection of respiratory pathogens may lead 
to mixed infections, causing antagonistic or synergistic 
effects among pathogens and altering the severity of the 
disease. Comparative analysis was conducted between 
mixed infections and single infections based on Ct values, 

gender, age, and number of symptoms. (Table 4). In the 
cases of single infection, there were 585 females (58.15%) 
and 421 males (41.85%). There were 49 males (41.17%) 
for double-mixed infections and 70 females (58.82%). In 
cases of multiple mixed infections, there were 2 males 
(33.33%) and 4 females (66.67%). The differences were 
not statistically significant (p > 0.05).In different age 
groups, there was no statistical significance between sim-
ple infection and co-infection in the age group, and age 
did not affect co-infection. The pathogens in both sim-
ple and mixed infections most commonly caused cases 
to exhibit two symptoms, with 235 cases (24.38%) for 
simple infection and 34 cases (27.20%) for mixed infec-
tion. However, there was no statistically significant differ-
ence in the number of symptoms caused by the infection 
(p > 0.05). the ct value of simple infection HSV was larger, 
and the difference in Ct value was statistically significant 
(Table 5). 

The study data was compared with respiratory patho-
gen surveillance data from Beijing [5] and Jinan [20] dur-
ing the NPIs. The total positive detection rate in Beijing 
was 10.97% during the NPIs period. The top five patho-
gen positives, from highest to lowest, were HCoV (2.42%), 
HRV (2.17%), HPIV (1.71%), Flu A and Flu B (1.50%), and 
RSV (1.23%). In Jinan, the overall positive detection rate 
was 40.18%. Among the top five pathogens, the posi-
tive rates were 9.85% for HRV, 8.94% for M. Pneumonia, 
6.53% for RSV, 3.13% for HPIV, and 2.16% for HADV.

In this study, the positive detection rate began to 
increase in week 38 of 2023 (September 11–17) and 
peaked in week 41 (October 2–8), with the highest 

Table 2 Positive detection rates of respiratory pathogens in different age groups

P < 0.05 shows that the difference is significant.

*Denotes Fisher exact probability method.

Pathogens  < 14 years (n,%) 14–59 years (n,%)  > 59 years (n,%) χ
2 P value

HBoV 0(0.00) 2(0.25) 0(0.00) 0.584* –

HSV 2(1.20) 20(2.50) 7(3.00) 1.232* 0.559

S. pneumoniae 0(0.00) 5(0.60) 2(0.90) 0.954* 0.620

C. pneumoniae 0(0.00) 2(0.25) 0(0.00) 0.584* –

M. Pneumonia 12(7.30) 10(1.30) 0(0.00) 23.693*  < 0.001

H. influenzae 3(1.80) 9(1.10) 3(1.30) 0.901* 0.625

HMPV 8(4.90) 33(4.20) 32(15.90) 41.322  < 0.001

HADV 25(15.20) 13(1.60) 3(1.30) 79.755  < 0.001

Flu A 48(29.30) 344(43.30) 87(37.30) 12.169 0.002

Flu B 43(18.50) 159(20.00) 22(9.40) 13.892  < 0.001

EV 0(0.00) 5(0.60) 0(0.00) 1.197* 0.510

HPIV 7(4.30) 43(5.40) 13(5.60) 0.406 0.808

HCoV 4(2.40) 60(7.60) 31(13.30) 16.053  < 0.001

HRV 8(4.90) 55(6.90) 20(8.60) 2.045 0.369

RSV 4(2.40) 34(4.30) 8(3.40) 1.387 0.504
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number of positive cases recorded in week 48 (Novem-
ber 20–26) (Fig.  3A). Influenza maintained a high level 
throughout the monitoring period. Flu A detection 
peaked in week 48 (November 20–26) with a positive 
rate of 62.6% and remained high from week 41, 2023, 
to week 1, 2024 (October 2-January 7). Flu B showed a 
high rate from week 52, 2023, to week 6, 2024 (December 

18, 2023–February 11, 2024). HRV and HCoV detec-
tion peaked in week 39 (September 18–24) and gradu-
ally declined (Fig. 3B). EV, HPIV, HMPV, and RSV were 
detected throughout the monitoring period but with rel-
atively low detection rates. HADV had a relatively higher 
detection rate from week 52, 2023, to week 6, 2024, 
while H. influenzae and S. pneumoniae were detected in 

Table 3 Clinical symptom distribution of participants infection with respiratory pathogens

P < 0.05 shows that the difference is significant.

*Denotes Fisher exact probability method.

Pathogens Cough Headache Sore throat Muscle pain Nasal congestion Runny nose Fatigue χ
2 P value

HRV 49(20.16) 30(12.35) 47(19.34) 25(10.29) 27(11.11) 37(15.23) 28(11.52) 19.54 0.003

EV 3(15.00) 3(15.00) 2(10.00) 3(15.00) 3(15.00) 2(10.00) 4(20.00) 1.419* 0.996

HSV 19(19.39) 14(14.29) 13(13.27) 10(10.20%) 14(14.29) 15(15.31) 13(15.00) 3.667 0.738

S. pneumoniae 5(25.00) 3(15.00) 3(15.00) 2(10.00) 1(5.00) 3(15.00) 3(15.00) 3.596* 0.768

M. Pneumonia 20(26.67) 11(14.67) 10(13.33) 7(9.33) 9(12.00) 10(13.33) 8(10.67) 12.133 0.060

HPIV 43(21.83) 22(11.17) 33(16.75) 19(9.64) 24(12.18) 30(15.23) 26(13.20) 16.203 0.013

HCoV 59(24.08) 34(13.88) 48(19.59) 25(10.20) 22(8.98) 27(11.02) 30(12.24) 38.8  < 0.001

RSV 38(30.16) 12(9.52) 23(18.25) 4(3.17) 17(13.49) 21(16.67) 11(8.73) 46.407  < 0.001

Flu A 380(22.77) 214(12.82) 280(16.78) 153(9.17) 163(9.77) 225(13.48) 254(15.22) 175.066  < 0.001

H. influenzae 12(19.35) 8(12.90) 12(19.35) 7(11.29) 6(9.68) 7(11.29) 10(16.13) 4.855 0.582

HMPV 55(26.57) 23(11.11) 36(17.39) 18(8.70) 22(10.63) 31(14.98) 22(10.63) 38.731  < 0.001

HADV 23(23.96) 15(15.63) 20(20.83) 11(11.46) 7(7.29) 8(8.33) 12(12.50) 18.326 0.005

Flu B 165(24.59) 87(12.97) 112(16.69) 60(8.94) 70(10.43) 85(12.67) 92(13.71) 87.714  < 0.001

HBoV 1(10.00) 2(20.00) 1(10.00) 1(10.00) 2(20.00) 2(20.00) 1(10.00) 1.856* –

C. pneumoniae 2(25.00) 1(12.50) 0(0.00) 1(12.50) 1(12.50) 1(12.50) 2(12.50) 3.227 0.964

Fig. 2 Proportion of multi-pathogen mixed infection status
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weeks 49–51 (November 27-December 17) and were not 
detected during other times.

Building the ARIMA model
Stabilizing the series
A model was established based on weekly incidence data 
from June 2023 to February 2024, and a time series plot 

was generated. The time series plot showed non-station-
arity. Next, the stationarity of the series was confirmed 
using the Augmented Dickey–Fuller (ADF) unit root test 
in Eviews software, after conducting trend and intercept 
tests, with a reported t = -3.37, p-value > 0.05. Thus, the 
original time series required stabilization. A transformed 
time series plot was generated after applying a first-order 
difference (d = 1). It was visually assessed for stationarity 
and tapering, indicating improved stationarity. The ADF 
unit root test yielded a p-value < 0.01, confirming basic 
stationarity. However, seasonal differencing increased 
instability, so a first-order difference was chosen [Supple-
mentary Fig. 1].

Model identification
ACF and PACF plots were generated for the transformed 
series, showing zero-lag autocorrelation and partial auto-
correlation after first-order differencing. ARIMA (0,1,4) 
(0,0,0) was selected as the optimal model after testing dif-
ferent p, d, and q values. The model had an R2 value of 
0.930, and the standardized Bayesian Information Crite-
rion (BIC) value was the smallest among all fitted mod-
els at 5.338. A residual test using Ljung-Box Q = 10.930 
and p = 0.691 confirmed that the residual sequence was 
white noise. The mean absolute percentage error (MAPE) 
between actual and predicted values was 34.181, indicat-
ing a good model fit [Supplementary Fig. 2].

Model fitting
Based on the weekly number of cases from June 2023 
to February 2024, the ARIMA (0,1,4) (0,0,0) model was 
constructed. The optimal model was used to predict 
the number of respiratory pathogens until June 2024, as 
shown in the graph (Fig. 4). The actual number of cases, 
as seen from the table, all fall within the 95% confidence 
interval of the predicted values, indicating a good fit of 
the model (Table 6).

Discussion
Large and medium-sized cities have a concentrated pop-
ulation, apparent seasonal climate, and high incidence 
of respiratory infectious diseases. This study focused on 
monitoring multiple respiratory pathogens in feverish 
populations in Nanjing communities to establish a res-
piratory pathogen spectrum and fill the gap in acute res-
piratory infectious disease monitoring after the cessation 
of NPIs. The study showed that from week 42 (October 
2023), there was a rapid increase in positive pathogen 
samples, maintaining a stable and high positive detection 
rate, dropping in December and then showing a growth 
trend until early February 2024. This study conducted 
molecular epidemiological research on respiratory path-
ogens to identify dominant genotypes. This contributes 

Table 4 Characteristics of simple and mixed infections in 
positive cases

P < 0.05 shows that the difference is significant.

* Denotes fisher exact probability method.

Simple 
infection 
(N,%)

Co-infection (N,%) χ
2 P value

2 > 2

Gender

Male 417(43.12) 49(41.17) 2(33.33) 0.388 0.821*

Female 550(56.88) 70(58.82) 4(66.67)

Age group(yr)

 < 14 125(12.03) 23(19.33) 0(0.00) 6.000 0.158*

14–59 656(65.20) 71(59.66) 6(100.00)

 > 59 186(18.49) 25(21.01) 0(0.00)

Number of symptoms

1 216(22.50) 22(18.49) 1(16.67) 10.189 0.496*

2 235(24.48) 33(27.73) 1(16.67)

3 156(16.25) 20(16.81) 2(33.33)

4 110(11.46) 14(11.76) 0(0.00)

5 102(10.62) 8(6.72) 0(0.00)

6 61(6.35) 9(7.56) 2(33.33)

7 80(8.33) 13(10.92) 0(0.00)

Table 5 Comparison of Ct Values between Simple Infection and 
Co-Infection

P < 0.05 shows that the difference is significant.

Pathogens Simple 
infection 
(N,%)

Mixed 
infection(N,%)

t P value

HRV 29.67 28.93 0.919 0.057

EV 31.10 32.16 0.568 0.806

HSV 34.57 32.55 1.661 0.042

S. pneumoniae 34.47 32.55 0.605 0.936

M. Pneumonia 33.34 27.62 4.577 0.666

HPIV 27.19 27.43 2.344 0.723

HCoV 29.38 29.65 0.206 0.685

RSV 31.16 31.58 0.25 0.086

Flu A 27.19 27.43 0.345 0.423

H. influenzae 32.14 32.94 0.107 0.213

HMPV 27.79 29.21 1.047 0.727

HADV 31.13 32.84 1.060 0.824

Flu B 27.15 27.17 0.019 0.213
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to a deeper understanding of the epidemiological char-
acteristics of different pathogens, including their trans-
mission routes, infectivity, and seasonal distribution. 
This study’s overall positive detection rate was 53.57%, 
with high detection rates for Flu A and Flu B (24.00% 
and 10.95%, respectively). All Flu A subtypes were H3N2, 
while all Flu B subtypes were B/Victoria lineage. Influ-
enza viruses showed a peak in winter and spring, with Flu 
A prevalent from October to January and Flu B prevalent 
from December to February, consistent with research in 
Beijing [21]. However, our study’s high detection rate of 
influenza viruses indicates a severe influenza situation in 
our city.

HRV was prevalent from August to October, consist-
ent with research in Taizhou [22]. This study conducted 

Fig. 3 Number of positive cases and positive detection rate of respiratory pathogens per week

Fig. 4 The ARIMA model fitting

Table 6 Actual and predicted number of positive cases of 
respiratory pathogens

Date Actual Fitting 95%CI

20–26 November 2023 146 151.98 132.99–170.96

27 November–3 December 2023 36 61.86 43.00–80.72

4–10 December 2023 20 28.59 9.73–47.44

11–17 December 2023 25 28.08 9.23–46.93

18–24 December 2023 48 47.52 28.76–66.29

25–31 December 2023 53 47.4 28.65–66.15

1–7 January 2024 40 50.38 31.63–69.12

8–14 January 2024 56 46.36 27.67–65.05

15–21 January 2024 92 94.94 76.28–113.6

22–28 January 2024 63 55.59 36.93–74.24

29 January–4 February 2024 45 45.12 26.48–63.75
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typing tests on simple infection of rhinoviruses and 
enteroviruses, detecting a total of 18 strains of rhinovirus 
A, including 3 of type A21, 2 of type A64, 2 of type A7, 
1 of type A71, and 3 of type A98, as well as 3 strains of 
rhinovirus B, including 1 of type B69, and 17 strains of 
rhinovirus C, including 2 of type C1. It can be observed 
that the detection rates of HRV A and C types are rela-
tively high, consistent with domestic and international 
research results [23, 24]. HRV-A and HRV-C are more 
likely to cause moderate to severe diseases, and type C 
is associated with childhood asthma attacks. Therefore, 
strengthening the monitoring of rhinovirus typing is 
of great significance for preventing and controlling res-
piratory infectious diseases. In enteroviruses, 3 strains of 
CV A6, 1 strain of CV A21, and 1 strain of enterovirus 
D68 were detected. CV A6 has become one of the main 
pathogens causing human hand-foot-and-mouth disease 
in recent years. While CV A21 and enterovirus D68 can 
also enter the body through the respiratory tract, they 
rarely cause hand-foot-and-mouth disease and herpan-
gina, mainly manifesting as symptoms of upper respira-
tory tract infections. HPIV, HCoV, HSV, EV, and HADV 
showed short-term low prevalence. Among them, HPIV 
is mainly type HPIV-3, and among the four serotypes, the 
infection rate of HPIV-3 is the highest, often peaking in 
the winter and spring seasons, consistent with previous 
research findings [25]. HCoV mainly invaded the upper 
respiratory tract with HCoV-OC43 and HCoV-229E 
types. HMPV, H. influenzae, S. pneumoniae, and C. pneu-
moniae had relatively low annual detection rates, appear-
ing sporadically. However, due to the short duration of 
our study and the lack of coverage in the spring, it is not 
sufficient to fully describe the common respiratory path-
ogen prevalence characteristics in the region, requiring 
further supplementation in the future.

Mixed infections of pathogens may pose challenges to 
the diagnosis, treatment, and epidemic prevention and 
control of respiratory infections. Concurrent or sequen-
tial infection of respiratory pathogens may lead to mixed 
infections, causing positive synergistic or negative antag-
onistic interactions among pathogens, leading to varying 
degrees of disease severity changes in patients. Pathogen 
interactions can be categorized into three modes: (1) 
viral interference, (2) viral synergy, and (3) no interaction. 
Viral interference, also known as antagonism, occurs 
when the infection by the first virus reduces the replica-
tion of the second virus within the host. In contrast, viral 
synergy, or enhancement, refers to a situation where the 
first virus may enhance the infection of the second virus 
[26].In this study, mixed infections accounted for 11.45% 
of total positive cases, with Flu A mostly co-infected 
with other pathogens, and the highest positive detection 
rates in mixed infections were observed for Flu A + HRV, 

FluA + HCoV, FluA + HSV. Previous studies suggested 
negative interactions between IAV and RSV, HRV 
and IAV, while RSV and HRV co-infections indicated 
increased disease severity [26]. Previous studies have 
shown that [27],co-infections may lead to an increased 
hospitalization rate among patients with respiratory viral 
infections, indicating an escalation in disease severity. 
This study conducted a comparative analysis of single 
infections and co-infections based on gender, different 
age groups, Ct values, and the number of symptoms. The 
results ultimately revealed statistically significant differ-
ences between single infections and co-infections across 
different age groups. The lack of statistical significance in 
symptom numbers may be due to the challenge of deriv-
ing conclusions about severity solely based on symptom 
counts. HRV, HSV, M. Pneumoniae, and S. pneumoniae 
in mixed infections had smaller Ct values than single 
infections, possibly due to synergistic effects between 
pathogens, resulting in increased disease severity. The 
Ct value for HSV single infection was 34.57, while for 
mixed infection, it was 32.55, with significant differences 
and higher persuasiveness. However, HADV and HMPV 
single infection had larger Ct values, possibly related 
to their role as primary infecting viruses activating the 
host’s non-specific innate immune response. Due to the 
short study period and relatively low number of mixed 
infection cases, significant results could not be obtained. 
Viral interference may provide a new model for antivi-
ral treatment research. Some studies have shown that 
Influenza A virus Defective Interfering Particles (IAV-
DIPs) can stimulate the host’s innate immune system to 
inhibit HSV infection and replication [28], suggesting 
a potential preventive and therapeutic role in respira-
tory infectious diseases. Some studies [29, 30] have also 
shown that the antagonistic effects between viruses were 
closely related to the reduction in the severity of diseases 
caused by respiratory viral infections. For example, HRV 
infection was found to decrease the probability of infec-
tion with influenza A (H1N1 subtype). There is limited 
research in China in this area, and future monitoring 
of more data can lead to further research. Subsequent 
follow-up tracking or research based on hospital cases 
could further investigate this matter. Currently, there is 
limited research on viral interference in China. Further 
studies on the types of viral interactions and the mecha-
nisms underlying viral interference can provide valuable 
insights for the formulation of public health policies, the 
development of vaccines, and the strategies for control-
ling acute respiratory infections.

Starting in January 2023, China lifted control measures 
for COVID-19 from Class A infectious diseases. This 
study was conducted from June 2023 to the end of Feb-
ruary 2024 after a comprehensive relaxation of epidemic 
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control measures. The aim was to explore the changes 
in the respiratory pathogen spectrum after the cessation 
of NPIs. Since the emergence of COVID-19, China has 
implemented NPIs, including encouraging mask-wear-
ing, patient isolation, social distancing, hand hygiene, 
and disinfection to prevent new SARS-CoV-2 infections. 
Comparing the spectrum of respiratory pathogens in 
Jinan City and Beijing City during NPIs period with that 
in this study, the overall positive detection rate of patho-
gens in this study (54.15%) was significantly higher than 
that in Jinan City (40.18%) and Beijing (10.97%), indicat-
ing that NPIs measures against COVID-19 significantly 
reduced the prevalence of respiratory pathogens.

Furthermore, the detection rate of influenza in this 
study was 34.95% (24.00% + 0.95%), which was signifi-
cantly higher than 3.44% in Jinan City and 1.5% in Bei-
jing City, and the positive detection rate of all pathogens 
in this study was higher than that in Beijing city, possibly 
because NPIs measures during COVID-19 not only pre-
vented the invasion of viruses but also cut off the trans-
mission of other respiratory pathogens. However, the 
overall positive rate of respiratory pathogens is rising, 
which may be linked to the public’s relaxation of vigi-
lance against respiratory infectious diseases. It may also 
be related to the immune debt after the novel coronavi-
rus pandemic, resulting in a rebound or high epidemic 
level of some infectious diseases. However, during NPIs, 
the positive rate of HRV pathogens in Jinan City was 
9.85%, higher than 8.7% in this study, which may be since 
HRV is transmitted through direct or indirect contact 
with contaminated items, which requires chlorine-based 
disinfectants to eradicate, and the use of ethanol is less 
effective. In addition, the positive rates of Mycobacte-
rium pneumoniae and respiratory syncytial virus in Jinan 
were significantly higher than in our study, which may be 
because our study focussed on community populations 
rather than hospital-based studies, and that Jinan has a 
higher proportion of children under the age of 15, who 
are more susceptible to these pathogens.

In recent years, there has been extensive research in 
China utilizing the ARIMA model for infectious disease 
surveillance and prediction, demonstrating its effec-
tiveness, particularly in short-term forecasting [31, 32]. 
Based on the scientifically predicted results of the model, 
early detection of respiratory pathogen trends can be 
achieved, providing timely warnings for control efforts 
and facilitating the targeted formulation of preven-
tion and control strategies. In this study, fitting models 
were established using the ARIMA model (0,1,4), (0,0,0) 
based on influenza surveillance data from June 2023 to 
February 2024. According to the forecast results of the 
ARIMA model, influenza peaks are expected to occur 
in late autumn and winter of 2023, with the number of 

detected respiratory pathogens projected to decline ini-
tially from March to June 2024 before stabilizing. This 
trend may be attributed to the rising temperatures during 
the spring and summer seasons. Nanjing, characterized 
by a subtropical monsoon climate, experiences a notice-
able temperature increase by the end of February, along 
with high humidity and rainfall. Studies have indicated 
that the transmission of respiratory viruses is associated 
with climate conditions, especially humidity and tem-
perature, with respiratory pathogens being more likely 
to spread under cold and dry conditions [33]. Addition-
ally, this study has certain limitations as it only considers 
the quantity of detected pathogens, potentially leading to 
underreporting or overreporting biases in weekly data.

Overall, our study monitored respiratory infections in 
the community population of Nanjing City, providing 
insights into the spectrum and co-infections of respira-
tory pathogens. A time series forecasting model has been 
established to serve as a reference for prevention and 
control efforts. While filling gaps in Nanjing’s respiratory 
pathogen spectrum research, our study has limitations 
due to a short period and single sample source. Future 
research could involve hospital samples to understand 
respiratory pathogens’ epidemiology further, establish a 
more comprehensive pathogen spectrum, and enhance 
Nanjing’s monitoring and alert system post-COVID-19 
pandemic.
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