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Abstract 

Background  The COVID-19 pandemic has underscored the critical role of sequencing technology in disease control 
and outbreak response. However, resource limitations and challenging environments often impede such efforts 
in low and middle-income countries. This study aimed to investigate the spectrum of viral co-infections, particularly 
with human viral pathogens, in SARS-CoV-2 positive individuals in Sierra Leone using metagenomic sequencing, 
evaluating the feasibility of utilizing this technology for epidemiological and evolutionary surveillance of pathogens 
related to public health in low-income environments.

Methods  We retrospectively collected and analyzed 98 nasopharyngeal swab specimens from SARS-CoV-2 positive 
individuals in Sierra Leone. Samples were pre-processed locally and transferred to China via FTA cards for metagen-
omic sequencing, which was performed using the Novaseq platform. The study focused on the identification of naso-
pharyngeal viruses co-infecting with SARS-CoV-2, with a deeper analysis of significant human viral pathogens such 
as HPV.

Results  The study identified 22 viral taxa from 20 families, including 4 human viruses. Notably, 19.4% of samples 
showed HPV co-infection with 34 distinct types, predominantly beta and gamma HPVs. Multiple HPV types were 
found in individual samples, indicating a high complexity of viral co-infections.

Conclusions  The identification of a wide range of co-infecting viruses, particularly multiple HPV genotypes, high-
lights the complexity of viral interactions and their potential implications for public health. These findings enhance 
our understanding of viral co-infections and provide valuable insights for public health interventions in Sierra Leone. 
Further research is needed to explore the clinical significance of these findings and their impact on disease outcomes.
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Background
The emergence of the COVID-19 pandemic has signifi-
cantly tested global capabilities for disease prevention 
and control. Viral genome sequencing has been instru-
mental in managing outbreaks and informing public 
health strategies; however, its implementation is often 
obstructed in low-resource settings by logistical, finan-
cial, and technical constraints [1]. In remote regions, 
these challenges are exacerbated, limiting the widespread 
adoption of sequencing for disease monitoring and con-
trol [2]. In Sierra Leone, as in many low and middle-
income countries (LMIC), these barriers necessitate 
innovative approaches to enhance the understanding of 
viral co-infections and their impact on public health [3].

To address these hurdles, our study employed a retro-
spective metagenomic analysis of SARS-CoV-2 positive 
nasopharyngeal swab specimen from Sierra Leone. This 
approach was chosen to gain insights into the spectrum 
of viruses that may co-infect with SARS-CoV-2, poten-
tially complicating diagnostics, treatment, and disease 
management [4, 5]. Additionally, by leveraging metagen-
omic technology, we aimed to assess its viability as a 
tool for public health surveillance in settings with lim-
ited resources. The lessons learned from this study could 
inform the development of strategies to improve disease 
control and prevention in Sierra Leone and other LMIC 
facing similar challenges.

The importance of metagenomic sequencing in pub-
lic health is increasingly recognized, particularly in the 
context of infectious diseases [6]. Metagenomic stud-
ies have been instrumental in identifying novel viruses 
and understanding viral diversity in human populations, 
which is crucial for developing effective vaccines and 
therapeutics [7]. Applying this technology in LMIC holds 
promise for enhancing disease surveillance and response, 
provided that the challenges of accessibility and resource 
limitations are adequately addressed.

Methods
Sample collection and processing in local laboratory
The workflow consists of three main parts: fieldwork in 
Sierra Leone, sample transfer, and sequencing in China. 
A total of 98 SARS-CoV-2 positive nasopharyngeal swab 
samples were included in this study. Individuals diag-
nosed between February 2021 to February 2023 under-
went SARS-CoV-2 nucleic acid testing at local facilities. 
The remaining swabs were stored at − 40  °C until the 
commencement of this study. The total nucleic acid was 
extracted from the samples (Bioperfectus, China) and 
performed confirmation testing for SARS-CoV-2 using 
RT-qPCR (Bioperfectus, China). Subsequently, reverse 
transcription reaction (ThermoFisher, USA) and multi-
plex displacement amplification (Qiagen, Germany) were 

conducted. The amplified products were pipetted onto 
FTA Elute cards (Qiagen, Germany) and transported to 
the laboratory of China CDC at room temperature under 
dry conditions for further processing.

Metagenomic sequencing and virome analysis
Nucleic acids were eluted from the FTA cards using 
QIAcard FTA Elute Buffer (Qiagen, Germany). Nucleic 
acid samples passing quality control were constructed 
libraries and sequenced on the Novaseq platform 
(Illumina, USA) with 150  bp length and paired-end 
sequencing. To control for potential environmental con-
tamination, the blank FTA cards were subjected to syn-
chronized processing. Sequencing data analysis was 
completed using our in-house metagenomic analysis 
pipeline [8]. Briefly, quality control was conducted using 
fastp (v0.23.4). Next, the data was aligned to the human 
reference genome using Bowtie2 (v2.3.5.1) to filter out 
human genome sequences. Subsequently, reads belong-
ing to known cellular organisms were excluded using 
diamond (v2.1.8). For virus identification, the remaining 
reads were matched against viral nucleotide and protein 
databases using blastn (v2.14.0) and diamond, respec-
tively. Taxonomies with aligned reads showing opti-
mal BLAST scores were resolved using the MEGAN6 
Metagenome Analyzer (v. 6.24.23).

HPV identification and phylogenetic analyses
To classify HPV more accurately, the datasets were 
aligned with the HPV reference genomes (PAVE, https://​
pave.​niaid.​nih.​gov/) separately [9, 10]. All aligned reads 
were obtained and conducted de novo assembly on the 
data using megahit software (v1.2.9). Then, the assembled 
overlapping fragments were compared and subjected to 
phylogenetic analysis using the reference genome and 
HPV L1 gene sequence (IHRC, https://​www.​hpvce​nter.​
se/) to determine the genotype of HPV in each sample 
individually [11, 12]. Furthermore, all near full-length 
genomes, defined as those exceeding 60% of the length 
(4800 base pairs) of the reference genomes, were submit-
ted to Geneious primer (v2024.0.4) for structural gene 
prediction. The chi-square test was utilized to examine 
differences in HPV positive rates among different gen-
ders, age groups, and residential locations, using Graph-
Pad software (v.9.0.0), with a significance level set at 0.05.

Results
Sample collection and socio‑demographic characteristics
All 98 infected individuals in this study were residents 
of Sierra Leone for over 6 months. They were undergo-
ing SARS-CoV-2 testing to apply for international travel 
documents. Out of the samples, 47 were from males, 41 
were from females, and gender information was missing 

https://pave.niaid.nih.gov/
https://pave.niaid.nih.gov/
https://www.hpvcenter.se/
https://www.hpvcenter.se/
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for 10 samples. Meanwhile, 67 were adults aged 18–59, 2 
were infants under the age of 1, and 4 were elderly indi-
viduals aged 60 and above. Based on the residence of the 
infected individuals, 84 lived in Freetown, 2 lived in other 
areas, and 12 were unknown (Table 1).

Virus spectrum identification
A total of 3569 million reads were obtained from 98 sam-
ples. Among them, the mean data size of the samples 
was 5.4 G data (Supplementary Table 1). Totally 22 viral 
taxa were identified in all samples, which belongs to 20 
viral families (Fig. 1), including 4 human viruses (Coro-
naviridae, Anelloviridae, Papillomaviridae and Polyoma-
viridae), 2 fungi virus (Totiviridae and Partitiviridae), 3 
other virus (Bunyavirales, Ciroviridae and Genomoviri-
dae) and 11 viral families of Bacteriophage. SARS-CoV-2 
were detected in 74 out of 98 samples, with the relative 
abundance varied. Upon retesting the samples that did 
not initially detect SARS-CoV-2 using RT-qPCR, high 
ct values were observed. This could be due to viral RNA 

degradation during long-term storage. The data is depos-
ited in National Microbiology Data Center (NMDC) with 
Accession Numbers NMDC10018701 (https://​nmdc.​cn/​
resou​rce/​zh/​genom​ics/​proje​ct/​detail/​NMDC1​00187​01).

HPV identification and phylogenetic analyses
In 19 individuals, human papillomavirus (HPV) was 
identified, and metagenomic analysis revealed the pres-
ence of various genotypes. Totally 34 different HPV types 
were identified, which belong to beta (n = 22) and gamma 
(n = 12) Papillomavirus, but high-risk types such as HPV-
16 or HPV-18 were not found (Supplementary Table 2). 
Most putative HPV genomes or L1 gene Identity to clas-
sified or unclassified HPV genome > 90%, defined as new 
variant or sub-type of HPVs (Fig.  2A, B) [12, 13]. Fur-
thermore, structural gene prediction revealed that these 
putative genomes encode 6 or 7 major structural pro-
teins, which exhibit a high degree of consistency with the 
proteins encoded by betapapillomavirus and gammapap-
illomavirus, respectively (Fig. 2C). The putative genomes 
reported in this study were deposited in the GenBank 
with accession numbers PP296644–PP296687.

HPV infection rate and multiple infection
The HPV positive rate was 19.5% (8/41) in females and 
21.3% (10/47) in males, with no significant difference. 
Although 20% (16/80) of HPV-positive cases resided in 
urban, higher than 6.7% (1/15) in rural, the difference 
was not significant. Similarly, there was no significant dif-
ference in age groups, which may be related to the small 
sample size. Multiple HPV infections were observed in 8 
individuals, with 2–13 different types (subtypes or vari-
ant) of HPV identified in one case (Table  2). The high-
est number of HPV types was found in a 1-year-old boy, 
who had 4 types of beta- and 9 types of gamma- HPVs 
detected in his sample (Supplementary Table  2). The 
second highest number of HPV types was found in a 
23-year-old male, who was infected with eight types of 
HPV.

Discussion
In nature, co-infection with viruses is as widespread 
as single-virus infections. Co-infection typically leads 
to alterations in viral pathogenic, disruption of host 
defenses, and confusion of clinical symptoms, all of 
which contribute to making the diagnosis and treatment 
of the disease more challenging [4, 14]. In this study, ret-
rospective metagenomic study was conducted to investi-
gate the spectrum of viral co-infections in SARS-CoV-2 
positive individuals in Sierra Leone. Over 20 viral taxa 
co-infecting with SARS-CoV-2 were discovered. In our 
study, apart from SARS-CoV-2 and HPV, we identified 
human viruses belonging to the Anelloviridae family, 

Table 1  Socio-demographic characteristics of 98 SARS-CoV-2 
positive individuals

Gender Total

Female Male Unknown

Collection time

 2021 21 22 4 47

 2022 20 24 6 50

 2023 – 1 – 1

Age group

 <  = 1 – 2 – 2

 2–17 2 3 2 7

 18–39 18 19 3 40

 39–59 9 17 1 27

 >  = 60 2 2 – 4

 Unknown 10 4 4 18

Collection district

 Western Area Urban 32 39 9 80

 Western Area Rural 8 6 1 15

 Moyamba 1 – – 1

 North West Province – 1 – 1

 Port Loko – 1 – 1

Collection site

 Community 28 32 8 68

 Hospital 13 15 2 30

Residence place

 Freetown 37 38 9 84

 Kaffubullom – 1 – 1

 Kaiyamba 1 – – 1

 Unknown 3 8 1 12

Total 41 47 10 98

https://nmdc.cn/resource/zh/genomics/project/detail/NMDC10018701
https://nmdc.cn/resource/zh/genomics/project/detail/NMDC10018701
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specifically the genera Alphatorquevirus (n = 5), Beta-
torquevirus (n = 7), and Gammatorquevirus (n = 6), with 
a total of 51 individuals testing positive [15]. It is worth 
noting that while the Polyomaviridae family has a broad 
host range, including mammals, birds, and fish, we report 
the presence of Alphapolyomavirus (n = 1) in humans. 
The sequences in other samples were fragmented, mak-
ing it difficult to determine specific species or genera. 
Despite the widespread prevalence of Anelloviruses in 
the population, their association with human diseases is 
not well established [16]. Similarly, most human infec-
tions with Polyomaviruses seem to be asymptomatic or 
cause minimal symptoms [17]. Furthermore, there are 
two types of fungi viruses, as well as three other viruses 
that affect plants, insects, birds, or other mammals. It is 
possible that these viruses are related to various factors 
such as the environment and diet. The results suggest a 
rich diversity of viral communities in the local popu-
lation. However, as the nasopharyngeal region is con-
nected to both the nasal and oral cavities, samples are 
susceptible to contamination from the external environ-
ment. Therefore, the relationship between viruses dis-
covered through metagenomics in the nasopharyngeal 
and diseases, as well as the potential existence of emerg-
ing or re-emerging infectious diseases, warrants further 
investigation.

HPV commonly infects the population and is a signifi-
cant contributing factor to various cancers, thus receiving 

attention [18, 19]. Among these, cervical cancer’s inci-
dence is steadily rising in the sub-Saharan African region, 
imposing an exceptionally heavy disease burden [20, 21]. 
In this study, we observed a prevalence of 19.4% (19/98) 
HPV infections in the nasopharyngeal among the local 
population, with the presence of multiple infections 
involving various variants or subtypes. Limited resources 
in Sierra Leone have hindered the widespread imple-
mentation of HPV infection screening, despite efforts to 
address the issue [22]. Our observations on HPV types, 
specifically HPV-22 and HPV-80, differ from previous 
studies conducted on populations in West Africa [23]. 
This variation can be attributed to differences in HPV 
distribution among various countries and populations, as 
well as the fact that earlier research primarily focused on 
cervical cancer in females, with limited investigation into 
oral HPV infection in West Africa region [21].

Available evidence suggests that transmission of oral 
HPV infection is likely to occurs through oral sexual 
contact or vertically from mother to child during child-
birth [24]. Studies also indicate potential links between 
nasopharyngeal HPV infections and oropharyngeal can-
cer occurrence [25, 26]. Such associations are especially 
concerning in children, aged or immunocompromised 
people, as even non-high-risk HPV can impact immune 
status and trigger diseases [27, 28]. However, as a retro-
spective study, we lack clinical data to conclusively deter-
mine if these HPV infections correlate with diseases. 
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Fig. 1  Heat-map revealed the virome identified in 98 SARS-CoV-2 positive nasopharyngeal swab samples. Each column in the figure represents 
a sample The color bar on the left displays the classification of viruses, and the color bar at the top shows the basic characteristics of the cases. The 
color of the blocks represents the relative abundance of the virus, which has been normalized by each sample for data processing. Red represents 
high relative abundance, and blue represents low relative abundance
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Overall, the relatively high nasopharyngeal HPV preva-
lence may constitute a public health issue in Sierra Leone. 
Further research should evaluate correlations with can-
cers like oropharyngeal cancer.

Conclusion
The findings of this retrospective metagenomic study 
in Sierra Leone reveal a significant burden of HPV co-
infections among SARS-CoV-2 positive individuals, with 

19.4% of samples showing HPV presence and a diverse 
range of 34 HPV types identified. The predominance of 
beta and gamma Papillomavirus genera and the occur-
rence of multiple HPV types within single individuals 
underscore the complexity of viral interactions and their 
potential public health implications, particularly con-
cerning cancer risks. The study not only highlights the 
utility of metagenomic sequencing for disease surveil-
lance in low-income settings but also underscores the 

Fig. 2  Phylogenetic analysis and ORF prediction of putative HPV genomes identified in nasopharyngeal swab samples, Sierra Leone. The 
phylogenetic trees constructed for putative Human Papillomavirus (HPV) genomes (A) and L1 gene sequences (B), respectively, highlighting 
sequences discovered in this study (marked in red for Gamma HPV and purple for Beta HPV). The open reading frame (ORF) prediction for identified 
betapapillomavirus and gammapapillomavirus genomes (C)
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necessity for further research to elucidate the clinical 
significance and impact of these co-infections on dis-
ease outcomes. This knowledge is critical for informing 
public health strategies, including HPV screening and 
vaccination programs, ultimately aiming to alleviate the 
burden of HPV-related diseases in Sierra Leone and simi-
lar contexts.

Abbreviations:
SARS-CoV-2	� Severe Acute Respiratory Syndrome Coronavirus 2
COVID-19	� Coronavirus Disease 2019
LMIC	� Low- and Middle-Income Countries
HPV	� Human papillomavirus
FTA	� Flinders Technology Associates
RT-qPCR	� Real-time quantitative reverse transcription PCR

Table 2  HPV identified in 19 nasopharyngeal swab samples and their characteristics

a Most putative genomes or L1 gene identity to classified or unclassified HPV genome > 90%, defined as new variant or subtypes of HPVs. The HPV type is represented 
in the table by the closest identity classified or unclassified HPV genome

ID HPV typea HPV 
unclassifieda

Multiple 
infection

HPV genotype Age Gender Collection 
district

Residence place

m002 HPV-49 1 Betapapilloma-
virus

Unknown Female Western Area 
Urban

Unknown

m006 HPV-
mm292c88nr

1 Betapapilloma-
virus

34 Male Western Area 
Urban

Freetown

m100 HPV-24 HPV-mSK043nr 2 Betapapilloma-
virus

39 Male Port Loko Kaffubullom

m104 HPV-47 1 Betapapilloma-
virus

31 Female Moyamba Kaiyamba

m108 HPV-188/195 2 Beta & Gamma 22 Female Western Area 
Urban

Freetown

m133 HPV-14 1 Betapapilloma-
virus

Unknown Female Western Area 
Urban

Freetown

m139 HPV-21/22/80/98/146/168/197 HPV-
mdo1c232nr/
mEV03c05nr/
mEV03c212nr/
mSK061nr/
mSK206nr/
mTVMBSHc33nr

13 Beta & Gamma 1 Male Western Area 
Urban

Freetown

m140 HPV-47 1 Betapapilloma-
virus

29 Female Western Area 
Rural

Freetown

m142 HPV-mFS1nr 1 Gammapapil-
lomavirus

51 Female Western Area 
Urban

Freetown

m145 HPV-21 HPV-
mm292c88nr

2 Betapapilloma-
virus

52 Male Western Area 
Urban

Unknown

m147 HPV-22/80/197 HPV-
mEV03c212nr/
mSK061nr/
mSK206nr

6 Beta & Gamma 54 Male Western Area 
Urban

Freetown

m148 HPV-22 1 Betapapilloma-
virus

46 Male Western Area 
Urban

Unknown

m150 HPV-5/75/174 3 Betapapilloma-
virus

Unknown Unknown Western Area 
Urban

Freetown

m152 HPV-5/80 2 Betapapilloma-
virus

41 Female Western Area 
Urban

Freetown

m163 HPV-
14/93/115/122/152/196/206/222

8 Beta & Gamma 23 Male Western Area 
Urban

Freetown

m183 HPV-
mHIVGc36nr

1 Betapapilloma-
virus

44 Male Western Area 
Urban

Unknown

m190 HPV-182 1 Betapapilloma-
virus

37 Male Western Area 
Urban

Freetown

m191 HPV-
mEV03c212nr

1 Gammapapil-
lomavirus

32 Female Western Area 
Urban

Freetown

m192 HPV-174 1 Betapapilloma-
virus

33 Male Western Area 
Urban

Freetown
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