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Abstract
Background: Human papillomavirus (HPV) infection is known to be the most important etiologic
factor of cervical cancer. There is no HPV specific therapy available for treatment of invasive
squamous cell carcinoma of the cervix and its precursor lesions. The present study elucidates the
potential to use herpes simplex virus (HSV) derived vectors for expression of antisense RNA to
HPV -16 E7 oncogene.

Results: We have constructed replication competent, nonneuroinvasive HSV-1 vectors, deleted
of the γ134.5 gene. The vectors express RNA antisense to the first 100 nucleotides of the HPV-16
E7 gene. We assayed the ability of the antisense E7 vectors R5225 (tk-) and R5226 (tk+), to produce
antisense RNA, as well as the consequent effects on E7 mRNA and protein levels in HPV-16
positive CaSki cells. Anti-E7 RNA was expressed by both constructs in a dose-dependent manner.
Expression of HPV-16 E7 mRNA was downregulated effectively in CaSki cells infected with the tk-
recombinant R5225 or with R5226. The tk+ recombinant R5226 was effective in downregulating
E7 protein expression.

Conclusion: We have shown that anti-E7 RNA expressed from an HSV vector could efficiently
downregulate HPV-16 E7 mRNA and E7 protein expression in CaSki cells. We conclude that HSV
vectors may become a useful tool for gene therapy of HPV infections.

Background
Human papillomaviruses (HPVs) are small, non-envel-
oped DNA viruses that infect epithelial cells of skin and
mucosa and replicate only in differentiating keratinocytes.

Infection of the mucosa with high-risk HPV types is con-
sidered as the single most important etiological factor in
cervical carcinogenesis. Particularly, HPV-16 is found in
over 50% of squamous cell carcinomas of the uterine cer-
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vix [1,2]. Currently, there is no HPV specific therapy avail-
able for treatment of invasive squamous cell carcinoma of
the cervix and its precursor lesions. However, there are
promising results from prophylactic randomized HPV
vaccination trials using virus-like particle vaccines against
HPV -16 and -18 or HPV -6, -11, -16, and -18 [3].

E6 and E7 are the major oncogenic proteins produced by
the cervical cancer associated HPVs [4,5]. Efficient kerati-
nocyte immortalization requires cooperation of both pro-
teins. Association of the E6 protein with p53 results in
ubiquitin-dependent degradation of this tumor suppres-
sor protein [6]. In addition to p53, E6 can bind to at least
twelve other cellular proteins [7]. E7 can interact with the
pRb tumor suppressor protein [8-11], which results in
release of transcription factor E2F, leading to increased
cell cycle progression. Continued expression of the E6 and
E7 genes is necessary for the maintenance of the malig-
nant phenotype [12]. Thus, the E6 and E7 gene products
are important oncoproteins and feasible targets for anti-
cancer therapies. CaSki cells, originally derived from a
human cervical cancer [13], contain approximately 600
copies of HPV-16 DNA, and the E7 gene is continuously
expressed in these cells.

Several approaches have been tested to inhibit E6 and E7
expression of HPV-16 and -18 in vitro. Antisense oligonu-
cleotides have proven to be ineffective due to poor pene-
tration and stability even with liposomes [14,15]. With
hairpin antisense ribozymes an effective inhibition of
HPV-16 E6/E7 immortalization has been reported [16].
Also retro- and adenoviral vectors producing antisense
RNA have been used with potential approach to the ther-
apy of HPV-16 positive cervical cancer [17,18].

Hybridization of antisense RNA with a complementary
mRNA sequence leads to formation of untranslatable
double-stranded RNA (dsRNA) molecules [19]. On the
other hand, dsRNA is subject to degradation in eukaryotic
cells [20]. Recently, the RNA interference (RNAi) technol-
ogy has been tested against the HPV gene expression in
cell lines [21,22]. RNAi against E6 and E7 has also been
shown to enhance the chemotherapeutic effect of cispla-
tin in HPV-18 positive HeLa cells [23]. Successful inhibi-
tion of the E6 or E7 genes of HPV-16 or -18 has been
achieved using transfection of siRNA [24-26] or short
hairpin (sh) RNA expression plasmids [27] to HPV-posi-
tive cells. The siRNA injections have also been used for
treatment of mouse tumor models [24,25]. As an alterna-
tive approach to inhibit the function of E6, Das and cow-
orkers have demonstrated growth inhibition of HPV 16
E6-expressing cells by expressing p53 homologue
p73beta, not subject to degradation by the E6 protein,
from an adenoviral vector [28].

Genetically engineered herpes simplex viruses (HSVs)
have been proposed to be used for treatment of human
malignant tumors, such as malignant gliomas [29-32].
HSV has several advantages as a gene therapy vector. Its
large genome contains up to 40 kbp of such genetic mate-
rial which is nonessential in infections of certain cultured
cells. Moreover, HSV has the ability to establish life-long
latent infections, and express latency-associated RNA for
tens of years [33,34]. The virulence and toxicity factors
have been mapped in great detail [34]. The use of HSV
vectors, deleted of the γ134.5 gene, has proven safe in
phase I studies in patients with gliomas [35,36]. It is con-
ceivable that HSV vectors with deletion of the γ134.5 gene
would be advantageous in cancer virotherapy studies,
since these viruses can not antagonize the effects of the
PKR kinase, induced by double stranded RNA molecules
in the infected cell [37].

To date, there has been no report on using replicative HSV
vectors for gene therapy of papillomavirus infections. The
present study focuses on the testing of a replication com-
petent, nonneuroinvasive HSV-1 vector, lacking the
γ134.5 gene. The vector was designed to express RNA anti-
sense to the first 100 nucleotides of the HPV-16 E7 gene,
from the egr-1 promoter. We assayed the ability of the vec-
tor to produce antisense RNA and its effect on E7 mRNA
and protein levels in cultures of CaSki cells, which carry
the integrated DNA of HPV 16. The present study focused
on the mRNA and protein changes in monolayer cultures,
where the viruses cause lytic infection similarly to the wild
type (wt) HSV-1.

Results
Construction and characterization of the recombinant 
viruses R5225 and R5226 containing the DNA sequence 
coding for RNA antisense to HPV-16 E7 ORF
The HSV viruses used in this study and their genotypes
were: R5225 (γ134.5-/tk-/antisense E7) and R5226
(γ134.5-/tk+/antisense E7), and their control viruses
R3617 (γ134.5-/tk-), R3616 (γ134.5-/tk+), and R3659
(γ134.5-/Pα 27tk+) as described in the Methods section.

The procedures for construction of the recombinant
viruses R5225 and R5226 are presented in Fig. 1 and
described in the Methods section. Briefly, the first 100
nucleotides of the E7 gene of HPV-16 were cloned in anti-
sense orientation in to a plasmid pRB 4878 [29] under the
egr-1 promoter, flanked by sequences derived from the
γ134.5 gene of HSV-1 (F). An additional deoxythymidine
nucleotide was inserted at the nucleotide position 571 of
the HPV-16 E7 ORF in order to introduce a frameshift,
introducing two stop codons in the sense orientation. The
E7 antisense element-containing plasmid pRB5225 was
cotransfected with DNA of the γ134.5 deletion virus
R3659, and the resultant recombinant virus was desig-
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nated R5225. The luminescence images of the electropho-
retically separated restriction fragments of viral DNA are
shown in Fig. 2. The DNA fragments, detected by hybrid-
ization with digoxigenin-labeled 1.8 kb NcoI fragment of
BamHI S, corresponded with the patterns predicted in Fig.
1. The wt 1.8 kb NcoI subfragment of the BamHI S repre-
sents the DNA sequence cloned in pRB4794. The 0.7 kb
NcoI fragment present in the parental virus R3659 is des-
ignated as band B (Figs. 1 and 2) and is replaced by the 2.2
kb NcoI fragment C present in the recombinant virus
R5225 (Figs. 1 and 2). The recombinant virus R5226 con-
tains an identical insertion within the γ134.5 domain, and
in this virus the natural thymidine kinase (tk) gene has
been repaired by cotransfection with a wt BamHI Q frag-
ment containing plasmid. The Southern hybridization
pattern of the BamHI restriction fragments of R5226 viral
DNA indicated the presence of the wt BamHI Q fragment
(data not shown). The transgenes in the viruses R5225
and R5226 were verified by nucleotide sequencing. Both
R5225 and R5226 expressed anti-E7 RNA in Vero and
CaSki cell cultures at 16 h.p.i., as detected by Northern
blotting (not shown) and by quantitative RT-PCR (see
below). In separate experiments we observed that the
expression of the viral transgenes was highest at 16–20
h.p.i. in our cell culture setting, and the effects on the
HPV-16 E7 mRNA were most evident at 16 h.p.i. (data not
shown). Therefore the timepoint of 16 h.p.i. was selected
for further studies. Both viruses caused a lytic infection
and cytopathic effect in monolayer cultures of Vero and
CaSki cells at late times post infection, beyond 24 h.p.i.,
when used at an m.o.i. of 1.0 or higher.

R5225 and R5226 express anti-E7 RNA similarly in a dose-
dependent manner, and downregulate HPV-16 E7 mRNA
For study of the antisense E7 RNA expression from the
viruses R5225 and 5226, monolayer cultures of CaSki
cells were infected with the recombinant viruses R3616,
R5226, R3617, and R5225 at an m.o.i. of 0.1, 1.0, and 3.2,
and harvested at 16 hours post infection. Real-time quan-
titative RT-PCR analyses were performed, using cellular
RNA and the primers and probes listed in Table 1, to mon-
itor antisense RNA production and resultant changes in
E7 mRNA levels (Fig. 3 and 4). The experiment was per-
formed in triplicate, with similar results. As control
viruses, we used the tk+/γ134.5- virus R3616 for the tk+/
γ134.5- antisense recombinant R5226, and the tk-/γ134.5-
virus R3617 as a control for the tk-/γ134.5- recombinant
R5225. We studied the changes in the E7 mRNA expres-
sion in comparison with the untreated CaSki cells, and
made also pairwise comparisons of the effects of the cor-
responding control and antisense viruses. The outcome of
these experiments was as follows:

(i) Anti-E7 RNA was expressed by both the R5225 and
R5226 constructs in a dose-dependent manner. R5226

was slightly more effective in producing antisense RNA.
The control viruses R3616 and R3617 expressed no detect-
able anti-E7 RNA (Fig. 3). At m.o.i. of 3.2 the viruses
R5225 and R5226 expressed significantly anti-E7 RNA (p
< 0.001 and p < 0.0001, respectively, in comparison with
untreated CaSki cells)

(ii) The tk- recombinant R5225 downregulated HPV-16
E7 mRNA expression effectively in CaSki cells (Fig. 4).
CaSki cells infected with R5225 showed 74 and 75 per
cent relative decrease in E7 mRNA levels compared to
those infected with the control virus R3617 (tk-), at an
m.o.i. of 1.0 and 3.2, respectively (p < 0.001; Fig. 4). In
comparison with the untreated CaSki cells, R5225
decreased significantly the E7 mRNA levels at m.o.i. of 1
(p < 0.05) and 3.2 (p < 0.001).

(iii) The R5226 construct expressed more anti-E7 RNA
than R5225 (Fig. 3). However, R5226 was slightly less
effective in downregulating the HPV-16 E7 mRNA expres-
sion in CaSki cells, yet it was effective in reducing the E7
protein (below). R5226 was more effective than its con-
trol virus R3616 at an m.o.i. of 0.1 (p < 0.001) and 3.2 (p
< 0.05), and the E7 mRNA was significantly reduced in
comparison with untreated cells at m.o.i. of 3.2 (p <
0.001) (Fig. 4). The parental virus R3659 did not show
significant effects on the E7 mRNA levels in CaSki cells
even at the m.o.i. of 1.0 or 3.2 (a minor reduction to 84%
and 76% of E7 mRNA amount of untreated CaSki cells,
respectively; data not shown). The downregulation of E7
mRNA was not only a result of nonspecific decrease in all
cellular mRNA levels, because we found that the cellular
beta-actin mRNA levels were unaffected by the anti-E7
HSV recombinants even at high m.o.i. (data not shown).
It is also noteworthy that the shown quantities of the E7
or anti-E7 molecules were presented as ratios to cellular
rRNA.

(iv) HPV-16 E7 mRNA was downregulated also in CaSki
cells infected with the control virus R3616 at higher
m.o.i.s (p < 0.05), but not significantly with the tk-, γ134.5
negative virus R3617 (Fig. 4). At low m.o.i. the R3616
virus rather induced the E7 mRNA expression. The reduc-
tion in E7 mRNA is most likely due to the general degra-
dation of host cell mRNA pool, caused by the shutoff
phenomenon in HSV infection per se.

HPV-16 E7 protein expression was most efficiently 
downregulated with R5226
For study of the E7 protein levels, CaSki cells were infected
with wt HSV-1(F), R3659, R5225, and R5226 at an m.o.i.
of 1.0 and 3.2 and harvested at the same time point as in
the previous experiments. The immunoblotting assay was
performed with a polyclonal anti-HPV-16 E7 antibody
(Fig. 5) and a computerized image analysis was done to
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Recombinant virusesFigure 1
Recombinant viruses. Schematic representation of the sequence arrangements in the recombinant viruses used in this study. 
Line 1, the HSV-1(F)Δ 305 genome lacks the 501-bp BglII-SacI sequence from the tk gene domain in the BamHI Q fragment of 
HSV-1(F). Line 2, the domain of the γ134.5 gene in the inverted repeat b'a' flanking UL sequence. The identical sequence in 
inverted orientation in the ab repeat is shown with dashed lines. Lines 4 and 5, sequence arrangement of the relevant domain 
of the R3659 recombinant. The StuI-BstEII fragment from the γ134.5 domain was replaced with the chimeric α 27-tk gene. The 
substitution was made in both the ab and a'b' domains of the recombinant genome (not shown diagrammatically). Lines 7 and 
8, sequence arrangement of the relevant domain of the R5225 recombinant. The α 27-tk gene of the R3659 recombinant was 
replaced with a cassette containing the first 100 bases of the HPV-16 E7 ORF in an antisense orientation under the egr-1 pro-
moter, and the hepatitis B virus polyadenylation signal. An additional deoxythymidine nucleotide was inserted at the nucleotide 
571 of the HPV-16 E7 ORF ("T") in order to introduce a frameshift and two stop codons in the sense orientation of the E7 
ORF. The corresponding tk+ recombinant R5226 was constructed by placing the tk gene back to its natural location ("Δ ", line 
1). The R3616 recombinant has a 1 kb deletion in both copies of the γ134.5 gene, and the rest of the genome is intact. R3617 is 
similar to R3616 but is tk negative, having a 501 bp deletion in its tk gene similarly as in line 1. Lines 3, 6, and 9, expected sizes 
of bands generated by restriction enzyme digestion with NcoI and hybridized with digoxigenin-labeled 1.8 kb NcoI fragment of 
the BamHI S; HSV-1(F), R3659, and R5225 would yield bands A, B, and C, respectively (see Fig. 2).
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monitor E7 protein levels in infected CaSki cells (data not
shown). Strong downregulation of E7 protein expression
was observed in cells infected with the recombinant
viruses. At an m.o.i. of 1.0, CaSki cells infected with
R3659 showed a more than 10-fold decrease in E7 protein
band intensity compared with uninfected CaSki cells (Fig.
5). Further, CaSki cells infected with the tk+ recombinant
R5226 showed 81 per cent decrease in E7 band intensity
compared with R3659. At 3.2 p.f.u. per cell, no E7 protein
could be detected in cells infected with any of the viruses
(data not shown).

Discussion
Several approaches have been tested to inhibit the E6 and
E7 expression of HPV-16 or -18. In our previous studies
degradation of E7 mRNA could be achieved using anti-
sense oligonucleotides directed to the E7 gene, though no
effect on the E7 protein could be detected [15]. The pene-
tration and stability of antisense oligonucleotides proved
to be poor even with liposomal delivery [14]. Alvarez-
Salas and coworkers have shown that anti-E6 oligodeoxy-
nucleotides could inhibit growth of transplanted HPV-16
positive tumors in nude mice, but this required constant
delivery of the oligonucleotides to the tumor tissue using
osmotic pumps. They have also shown that cis-expression
of an anti-E6 ribozyme and HPV-16 E6/E7 genes in nor-
mal human keratinocytes could efficiently prevent growth
rate and immortalization [16,38]. Recently, siRNA [39] or
sh RNA [27] have been used for successful silencing of
HPV 16 E6 and E7 gene expression in CaSki and SiHa cell
lines [22,25,27] or silencing of HPV-18 E6 and E7 in cer-
vical cancer cells [24,26]. However, the siRNAs [24-26] or
shRNA expression plasmids [27] were introduced into the
cells by transfection, similarly to the ssDNA antisense oli-
gonucleotides.

Recombinant adeno- and retroviruses are widely used as
gene delivery systems in experimental tumor therapy both
in vitro and in vivo. An adenoviral vector has been con-
structed expressing RNA antisense to HPV-16 E6 and E7
from the cytomegalovirus promoter [17]. The growth of
SiHa cells infected with the recombinant adenovirus was
significantly reduced. No data was given on the expression
levels of E6 and E7 mRNAs. Interestingly, it was also
found that the tumorigenicity of the infected SiHa cells
totally disappeared in an ex vivo study in nude mice [17].
Choo and coworkers cloned full-length HPV-16 E7 cDNA
in a retrovirus vector in reverse orientation to inhibit HPV-
16 E7 in CaSki cells [18]. Similarly to our results, they
found a reduction of HPV-16 E7 mRNA and protein
expression after retroviral infection. Also a dose-depend-
ent transduction of antisense HPV-16 E7 construct was
able to inhibit and/or retard the tumorigenicity of the
CaSki cells in nude mice [18].

Southern blot analysis of viral DNAFigure 2
Southern blot analysis of viral DNA. Luminogram of 
electrophoretically separated, NcoI-digested and hybridized 
viral DNA fragments. Viral DNAs were prepared from large 
scale cultures of Vero cells infected with the recombinant 
viruses, digested with NcoI, electrophoretically separated on 
an agarose gel, transferred to a Zeta probe membrane, and 
hybridized with digoxigenin-labeled 1.8 kb NcoI fragment of 
the BamHI S. The predicted sizes of the bands generated by 
the digestions shown in Fig. 1 are approximately 1.8 kb for 
band A, 0.7 kb for band B, and 2.2 kb for band C. The 80 bp 
band (Fig.1, line 6) was too small to be detected in this elec-
trophoresis. Viral DNA from two different plaques of R5225 
were analyzed (the two lanes labeled as R5225).
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The present study focused on the applicability of HSV vec-
tors in gene therapy of oncogenic HPV-16 infection in cell
culture. Effects on HPV oncogene mRNA expression were
assessed with real-time RT-PCR, which is an excellent
method for detection and quantitation of RNA species, in
this case HPV-16 E7 mRNA and the anti-E7 RNA pro-
duced by the new recombinant HSV vectors. The real-time
RT-PCR experiment showed that both recombinants
expressed the desired antisense RNA in a dose-dependent
manner, and particularly the tk- R5225 was constantly

effective in downregulating HPV-16 E7 mRNA in CaSki
cells. The relative reduction of E7 mRNA in cells infected
with R5225 was considerable at an m.o.i. of 1.0 and 3.2.
Infection with the tk+ recombinant R5226 downregulated
E7 mRNA in CaSki cells at an m.o.i. of 3.2 (p < 0.001),
and at an m.o.i. of 0.1 the downregulation was better than
with the control virus R3616. At m.o.i. of 1.0 the experi-
mental variation prevented reaching significance, but a
clear E7 mRNA reduction is observed. The antisense
sequence in our constructs, expressed from the egr-1 pro-
moter, covered only the first 100 nucleotides of the E7
gene, however, our results show that an effective downreg-
ulation was achieved by using it. Our previous studies
showed that the blockage of the 5'-end of the E7 sequence
with antisense oligonucleotides was essential for degrada-
tion of HPV-16 E7 mRNA [15]. The egr-1 promoter has
been suitable for transgene expression from similar HSV-
1 vectors in many cell types [29] and it may be enhanced
by irradiation. However, use of cell type- or cancer-specific
promoters would still improve our approach.

The powerful shutoff of protein expression in the host cell
caused by the herpes simplex virus infections influenced
the interpretation of the specific effect of the antisense
RNA, produced by the recombinant viruses, on the E7
expression in monolayer cultures of CaSki cells. The
results of our quantitative RT-PCR were, however, stand-
ardized to the levels of cellular RNA. We studied also the
expression of cellular beta-actin mRNA and found that it
was unchanged in infections with the recombinant anti-
E7 HSV at moi's of 1.0 and 3.2, suggesting that the
observed effects on the E7mRNA were not result of a gen-
eralized decrease in all cellular RNAs. The HSV-1 (F) wild
type virus infection was not used as control for the E7
mRNA determinations, due to the presence of the intact
γ134.5 gene. Rather, we used the corresponding γ134.5
negative viruses R3616 (tk+), and R3617 (tk-) for compar-
isons. We studied also the effects of the parental virus
R3659 (Pα 27tk+) on the E7 expression, though its
genomic structure is different from our other tk+ viruses.

Real-time RT-PCR analysis of anti-E7 RNAFigure 3
Real-time RT-PCR analysis of anti-E7 RNA. CaSki cells 
were infected with R3616, R3617, R5225, and R5226 at an 
m.o.i. of 0.1, 1.0, and 3.2, and harvested at 16 h.p.i. Total 
RNA was extracted and reverse transcription performed. 
Real-time PCR using the cDNA samples was performed as 
described in Materials and Methods. The diagram shows the 
amount of anti-E7 RNA, corrected for the 18S rRNA levels 
in these samples. Both R5225 and R5226 express antisense 
RNA in a dose-dependent manner. The statistical significan-
ces of the differences in anti-E7 copy numbers in comparison 
with uninfected CaSki cells are indicated by asterisks above 
the columns (***: p < 0.001; ****: p < 0.0001).
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Table 1: Oligonucleotides used for construction of the antisense plasmid and for real-time PCR

Purpose Name Sequence (5'-3')

pRB5225 E7ASp-FP GCTTAGGGTACCATGCATGGATGATACACCTA
construction E7ASp-RP GCTTAGGGTACCCTCTGAGCTGTCATTTAA

Real-time HBVAS-FP GAGAAGGGTCGTCCGCAGGAT
PCR 16E7AS-RP CTCTGAGCTGTCATTTAATTGCTCATA

anti-E7 16E7AS-PRO (6-FAM)-TGAATATATGTTAGATTTGCAACCAGAGACAACTGATCTCTACT-(TAMRA)
Real-time 16E7-FP CAGCTCAGAGGAGGAGGATGAA

PCR 16E7-RP CACACTTGCAACAAAAGGTTACAATATT
HPV-16 E7 16E7-PRO (6-FAM)-CCAGCTGGACAAGCAGAACCGGAC-(TAMRA)

Abbreviations: AS, antisense; p, plasmid; FP, forward primer, RP, reverse primer; PRO, probe; FAM, 6-carboxyfluorescein; TAMRA, 6-carboxy-
tetramethylrhodamine. The underlined base (T) in the primer "E7ASp-FP" is an insertion that introduces a frameshift and two stop codons in the 
sense orientation of the HPV-16 E7 ORF. The presence of the frameshift mutation in the pRB5225 plasmid was verified by sequencing. The primers 
and probes for the real-time RT-PCR except for "HBVAS-FP" were designed using Primer Express software (Applied Biosystems).
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The changes in E7 mRNA levels are quickly reflected in E7
protein expression, since the half-life of the HPV-16 E7
protein produced by recombinant baculoviruses in Sf-21
insect cells at +37°C is less than 30 minutes [40]. In West-
ern blotting studies of CaSki cells, at an m.o.i. of 1.0, the
amount of E7 protein in CaSki cells infected with the tk+
recombinant R5226 was grossly reduced and was about
five times less than with R3659 (Fig. 5). The effects of the
HSV vectors on cellular proliferation or apoptosis could
not be properly studied in our model, because the differ-
ences in these phenomena accumulate at much later time-
points of experiments, such as on days 5–9 post
treatments [25]. Also, our HSV vectors harbor the majority
of the anti-apoptotic genes of wt HSV [34], which limits
the study of the effects of the transgenes on apoptosis.
Because the transgene sequences are identical, the slight
differences between the effects of R5225 and R5226 on
the E7 mRNA levels may be partly due to the presence of
the intact UL23 and UL24 genes in the correct genomic

location in R5226, or to some possible yet unknown sec-
ondary mutations. The tk+ recombinant R5226 had no
clear growth advantage in the CaSki cells in monolayer
cultures.

The need for viral vectors as carriers of the antisense ele-
ments to tissues and cells in vivo remains in spite of the
novel oligonucleotide strategies. The potential to infect
non-dividing cells and to establish long-term transgene
expression, using suitable promoters (e.g. pLAT), give her-
pes simplex viruses advantages as gene therapy vectors.
More research will be needed to determine the qualities of
an optimal herpes simplex vector for RNA-mediated ther-
apy of HPV infection. Viral vectors have already been used
for delivery of short RNA molecules to certain cell types
[41]. Herpes simplex virus can express microRNA from its
genome [42] and it is likely that HSV can be used as a vec-
tor for expression of microRNA to cells infected with HPV.
Our next studies will concentrate on determining the
effects of the vectors on cell growth and differentiation, as
well as on constructing new, optimized HSV vectors. The
γ134.5 gene deletion mutants of HSV may exhibit less lytic
and less virulent infection pattern in vivo and in highly
organized tissue culture settings, which are an object of a
further study. As such, our vectors will be subject to fur-
ther attenuation, now that the effect of the transgene has
been established. The tropism of HSV to the genital epi-
thelium, which is the site of HPV infection, renders the

Western blot of E7 proteinFigure 5
Western blot of E7 protein. Photograph of infected CaSki 
cell proteins electrophoretically separated in denaturing gels 
and reacted with a rabbit polyclonal antibody to HPV-16 E7 
protein. HPV-16 positive CaSki cells were infected with 
R3659, R5225 or R5226 (1.0 p.f.u. per cell), harvested at 16 
h.p.i., lysed, run on a 15% SDS-PAGE gel, transferred on a 
PVDF membrane, and probed first with the anti-HPV-16 E7 
antibody and then with an HRP-conjugated anti-rabbit-Ig sec-
ondary antibody. The columns in the graph are: 1, CaSki cells 
with no HSV; 2 to 5, CaSki cells infected with wt HSV-1 (F), 
R3659, R5225, and R5226, respectively; 6, HaCaT cells 
(immortalized human keratinocytes with no HPV and thus no 
E7). The arrow indicates the location of the E7 protein in the 
gel.

Real-time RT-PCR analysis of HPV-16 E7 mRNAFigure 4
Real-time RT-PCR analysis of HPV-16 E7 mRNA. 
CaSki cells were infected with R3616, R3617, R5225, and 
R5226 at an m.o.i. of 0.1, 1.0, and 3.2, and harvested at 16 
h.p.i. Total RNA was extracted and reverse transcription 
performed. Real-time PCR using the cDNA samples was 
done as described in Materials and Methods. The amount of 
E7 mRNA in HSV infected CaSki cells is given in copies of E7 
mRNA molecules, corrected against rRNA levels in the same 
samples. The statistical significances of the differences in E7 
copy numbers in comparison with uninfected CaSki cells are 
indicated by asterisks above the columns (*:p < 0.05; ***: p ≤ 
0.001). The significances are shown for the cases with 
reduced E7 mRNA levels. The E7 mRNA values of the tk+ 
control R3616 were also compared with those of the tk+ 
antisense recombinant R5226 at the same m.o.i., and the tk- 
control R3617 values were compared with the tk- recom-
binant R5225 values at the same m.o.i.. The statistical signifi-
cances in the pairwise comparisons for the reduced E7 
mRNA levels are indicated by (#) above the respective col-
umns (#: p < 0.05; ###: p ≤ 0.001).
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attenuated vectors derived from HSV-1 as potential vehi-
cles for the RNA expression elements.

Conclusion
As of now, there are no previous reports on the applicabil-
ity of HSV vectors in treatment of HPV infections. The
present study introduces two new recombinant herpes
simplex virus vectors that express RNA antisense to HPV-
16 E7. We showed that anti-E7 RNA expressed from an
HSV vector could efficiently downregulate HPV-16 E7
mRNA expression. Although the vector needs further opti-
mization, we conclude that the results of the present study
suggest that HSV vectors may become a powerful tool for
gene therapy of HPV infections.

Methods
Cells and viruses
CaSki cells were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA). The cells were
propagated in Dulbecco's modified Eagle's medium
(DMEM) supplemented with 1% non-essential amino
acids, 50 μg/ml streptomycin, 100 U/ml penicillin, and
10% fetal bovine serum (FBS).

HSV-1 (F) is the prototype HSV-1 strain used in this study.
The recombinant virus R3659, described previously [43],
lacks the BglII -SacI subfragment of the BamHI Q frag-
ment, encoding the tk and UL24 genes. In R3659 the
BstEII-StuI subfragment of the BamHI S fragment, encod-
ing the γ134.5 and ORF P genes, is replaced by a chimeric
gene consisting of the coding domain of the tk gene fused
to the α 27 promoter (see Fig. 1).

The virus R3616 has a 1 kb deletion in both copies of the
γ134.5 gene [43,44], and the rest of the genome is intact.
R3617 is similar to R3616 but is thymidine kinase nega-
tive, having a 501 bp deletion in its tk gene similarly as in
Fig. 1, line 1.

Plasmids
The plasmid pRB4878 has been described elsewhere [29].
Briefly, it contains the egr-1 promoter, polylinker site and
the hepatitis B virus polyadenylation signal cloned within
the BspEI-BstEII deletion of the γ134.5 gene (Fig. 1).

Plasmid pRB5225, containing the first 100 bases of the
HPV-16 E7 gene in antisense orientation under the egr-1
promoter, was made by insertion of a 100-bp PCR prod-
uct, digested with KpnI, into the KpnI site in the polylinker
sequence of the pRB4878 plasmid (Fig. 1). The PCR reac-
tion was performed using HPV-16 DNA-containing CaSki
cellular DNA as template and PfuI DNA polymerase (New
England Biolabs, Beverly, MA, USA). The cloning PCR
primers E7ASp-FP and E7ASp-RP are shown in Table 1. An
additional deoxythymidine nucleotide was inserted in the

E7ASp-FP primer in order to introduce a frameshift at the
nucleotide position 571 of the HPV-16 E7 ORF, introduc-
ing two stop codons in the sense orientation of the HPV-
16 E7 ORF. The correct sequence of the insertion in the
pRB5225 plasmid and in the viruses was verified by
sequencing (Table 1).

Construction of recombinant viruses
The antisense E7-RNA-expressing virus R5225 was con-
structed by cotransfection of rabbit skin cells with the
pRB5225 plasmid and R3659 viral DNA, using protocols
described previously [29]. The selection for the resulting
recombinant tk- viruses was performed on 143TK- cells
overlaid with DMEM containing 5% fetal bovine serum
and 100 μg/ml of bromodeoxyuridine (BUdR). The selec-
tion was done by three successive rounds of plaque puri-
fication under BUdR, followed by preparation of viral
DNA and stocks from Vero cell cultures infected with
selected viral plaques, as described elsewhere [45]. The
corresponding tk+ virus R5226 was constructed according
to methods described previously [29]. The purified DNA
of the virus R5225 was cotransfected into rabbit skin cells
with the plasmid pRB165 containing the entire BamHI-Q
fragment. The selection for tk+ viruses was done by succes-
sive rounds of HAT selection in 143TK- cells overlaid with
HAT medium (DMEM supplemented with 5% FBS,
hypoxanthine, aminopterin, and thymidine), followed by
plaque purifications. The viral stocks and DNA were pre-
pared from Vero cell cultures infected with plaque puri-
fied viruses.

Analysis of viral DNA
The large scale preparation of viral DNA was done from
roller cultures of Vero cells, infected with selected plaque
stocks of the recombinant viruses. The DNA was purified
using NaI gradients [46]. The correct structure of the insert
was verified by hybridization of the electrophoresed,
Southern blotted NcoI-digested viral DNA fragments with
digoxigenin-labeled 1.8 kb NcoI fragment of the BamHI S
fragment (derived from the plasmid pRB4794; see [43])
(Fig. 2) or with digoxigenin-labeled oligonucleotide
E7ASp-FP used for cloning the HPV-16 E7 insert (data not
shown). The presence of the DNA insert in the recom-
binant genome was also verified by PCR of the isolated
viral DNA preparates using the insert-specific primers
E7ASp-FP and E7ASp-RP. The DNA preparates of R5226,
digested with BamHI, were analyzed for the presence of
the intact BamHI Q fragment by Southern hybridization
with the digoxigenin-labeled pRB165 plasmid, containing
the BamHI Q fragment of HSV-1 (F) DNA.

Infection of CaSki cells and production of cDNA
Trypsinized CaSki cells were plated on 6-well tissue cul-
ture plates (Falcon, Becton Dickinson Labware, Franklin
Lakes, NJ, USA) and let reach 80% confluency. The cells
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were infected with either R3617, R3659, R5225, R3616, or
R5226 using either 0.1, 1.0, or 3.2 plaque forming units
(p.f.u.) per cell. After adsorption (1 h, 37°C), monolayers
were washed with PBS and overlaid with DMEM contain-
ing 10% FBS. CaSki cells were harvested at 16 h post infec-
tion and total RNA was extracted using the TRIZOL
Reagent and treated with DNase I for 15 minutes in room
temperature as described by the manufacturer (Life Tech-
nologies, Paisley, UK). Reverse transcription was per-
formed with 1 μg of total RNA using the "1st Strand cDNA
Synthesis Kit" (Amersham Pharmacia Biotech Inc., Upp-
sala, Sweden) and random hexamer primers for 1 h at
37°C. In time series experiments the level of transgene
expression was found to be highest at 16–20 h.p.i., and
the effects on the E7 mRNA in CaSki cells were most evi-
dent at 16 h.p.i. Therefore the 16 h.p.i was selected as a
timepoint for further experiments. The HSV vectors
caused cytopathogenicity in the cell monolayer cultures at
late timepoints, beyond 24 hpi.

Real-time PCR
Real-time PCR using the cDNA samples was performed
with the "ABI Prism 7700 Sequence Detection System"
and the "TaqMan Universal PCR Master Mix" (Applied
Biosystems, Foster City, CA, USA). The amplification con-
ditions were: initial incubations for 2 min at 50°C and for
10 min at 95°C, followed by PCR cycling using a two step
cycle at 95°C for 15 sec and 60°C for 60 sec for a total of
40 cycles. The primers and probes are shown in Table 1.
The primers and probes for this experiment except for
HBVAS-FP were designed using the "Primer Express" soft-
ware (Applied Biosystems). Specific detection of anti-E7
cDNA was achieved with an upstream primer (HBVAS-FP)
specific for the hepatitis B virus polyadenylation sequence
present only in the antisense RNA. A standard curve for
anti-E7 cDNA was obtained by amplification of a dilution
series of cDNA produced from RNA transcribed in vitro
from a pGEM-T plasmid containing the insert of
pRB5225. A standard curve for E7 cDNA was obtained by
amplification of a dilution series of cDNA from CaSki cell
total RNA. All samples were also analyzed with the 18 S
rRNA Kit (PE Biosystems, Warrington, UK), and the anti-
E7 and E7 values were corrected using the values from
these amplifications. At least three "no template control"
reactions were included in each run. As a control for cellu-
lar mRNA changes during the HSV vector infections we
studied the cellular beta-actin mRNA by quantitative RT-
PCR as described previously [47]. The statistical analyses
were performed with SAS software using the Dunnett gen-
eralized linear model procedure.

Protein electrophoresis and immunoblotting
CaSki cells were grown as described above in 20 cm2 cell
culture dishes (Nalge Nunc International, Roskilde, Den-
mark) to 80% confluency. A similar culture of HPV nega-

tive HaCaT cells (immortalized human keratinocytes) was
grown to yield a control sample not containing E7 pro-
tein. CaSki cells were infected with R3659, R5225 and
R5226 at a multiplicity of infection (m.o.i.) of 1.0 and 3.2
and harvested at 16 hours post infection. The cells were
lysed by incubation in 50 μl of buffer containing 150 mM
NaCl, 50 mM Tris (pH 8.0), 5 mM EDTA, 1% Nonidet-P
40, 2 mM dithiothreitol, and 2 mM PMSF for 30 minutes
on ice. The lysate was centrifuged at 12000 × g for 30 min-
utes at +4°C. The supernatant with proteins was removed
and stored at -70°C.

The samples, containing 30 μg of protein, were suspended
in a 2 × sample buffer (100 mM Tris-HCl (pH 6.8), 200
mM dithiothreitol, 4% SDS, 0,2% bromophenol blue,
20% glycerol), boiled for 4 minutes and run on a 15%
SDS-PAGE. The proteins were transferred electrophoreti-
cally to "Hybond-P" PVDF membrane (Amersham Life
Science, Buckinghamshire, UK) in a running buffer con-
taining 25 mM Tris, 192 mM glycine, and 20% v/v meth-
anol. Equal loading was verified with Ponceau S staining.
The membranes were blocked with a buffer containing 1
× PBS, 0,1% Tween-20, and 5% non-fat dried milk for 1 h
and then probed with a rabbit polyclonal anti-HPV-16 E7
antibody (a gift from Dr. Massimo Tommasino). The
membranes were washed with PBS containing 0.1%
Tween-20 before and after incubation with the primary
antibody, 2 times for 10 min and 5 times for 5 min,
respectively. The membranes were then incubated with an
HRP-conjugated anti-rabbit-Ig secondary antibody
(Dako, Glostrup, Denmark) for 1 h and detected using
ECL+Plus Western blotting detection reagents (Amersham
Pharmacia Biotech, Uppsala, Sweden). Computerized
image analysis was performed to quantitate the intensities
of the signals with "Microcomputer Imaging Device ver-
sion M4" (Imaging Research, St. Catharines, Ontario,
Canada).
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