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Abstract
Background: Respiratory infection with the neurovirulent vaccinia virus (VV) strain Western
Reserve (WR) results in an acute infection of the lung followed by dissemination of the virus to
other organs and causes lethality in mice. The mechanisms of lethality are not well-understood. In
this study, we analyzed virus replication and host immune responses after intranasal infection with
lethal and non-lethal doses of VV using the WR strain and the less virulent Wyeth strain.

Results: The WR strain replicated more vigorously in the lung and in the brain than the Wyeth
strain. There were, however, no differences between the virus titers in the brains of mice infected
with the higher lethal dose and the lower non-lethal dose of WR strain, suggesting that the amount
of virus replication in the brain is unlikely to be the sole determining factor of lethality. The WR
strain grew better in primary mouse lung cells than the Wyeth strain. Lethal infection with WR
strain was associated with a reduced number of lymphocytes and an altered phenotype of the T
cells in the lung compared to non-lethal infections with the WR or Wyeth strains. Severe thymus
atrophy with a reduction of CD4 and CD8 double positive T cells was also observed in the lethal
infection.

Conclusion: These results suggest that the lethality induced by intranasal infection with a high
dose of the WR strain is caused by the higher replication of virus in lung cells and immune
suppression during the early phase of the infection, resulting in uncontrolled virus replication in the
lung.

Background
Vaccinia virus (VV) is a member of the Poxviridae, which
constitute a large family of enveloped DNA viruses and
replicate entirely in the cytoplasm of the infected cells
with a linear double-stranded DNA genome of 130–300
kilo base pairs [1]. Poxviruses have a broad range of
eukaryotic hosts including mammals, birds, reptiles and
insects [2,3] and can grow in many cell lines in vitro.
Some poxviruses are causative agents of human diseases.

Variola virus caused a deadly human disease smallpox
until its global eradication in 1977 [1,4,5], in which VV
was used as a vaccine. Other poxviruses causing human
diseases are molluscum contagiosum virus and the
zoonotic monkeypox virus [6,7]. Notably, variola and
monkeypox viruses are transmitted to humans by respira-
tory route, whereas molluscum contagiosum virus is
mainly transmitted through the skin. Variola and mon-
keypox viruses cause systemic infections with high levels
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of lethality, but the details of their pathogenesis are not
well-understood.

Intranasal inoculation of different VV strains in mice
shows different levels of virulence and only neurovirulent
strains cause lethality [8]. Western Reserve (WR) strain
was generated by intracerebral mouse passages, and an
intranasal inoculation results in an acute infection of the
lung followed by dissemination of the virus to various
organs [8-11]. Intranasal infection with a low dose of WR
strain induces an inflammatory infiltrate in the lung, and
the virus was cleared 10 to 15 days after infection [10];
however, infection with a high dose of WR strain caused
lethality, which has been used as a challenge model to
study the effect of antiviral drugs, immune IgG, soluble
viral proteins and other vaccine strains [9,12-20]. In one
report intranasal infection with the WR strain caused
pneumonia showing severe alveolar edema and acute
necrotizing bronchiolitis and peribronchiolitis as well as
neutrophilic infiltrates in the interstitium of the lung [21].
The mechanisms of lethality in mice infected with the
lethal dose of WR strain are, however, not well-under-
stood.

In this study, we focused on the differences in virus repli-
cation and host immune responses between lethal and
non-lethal respiratory infections with VV. We used two VV
strains; neurotropic virulent WR strain and the less viru-
lent Wyeth strain. Although BALB/c mice are frequently
used for intranasal challenge of vaccinia virus [10,22], we
used the C57BL6/J strain of mouse in these experiments
for two reasons. One is that most knockout mice lacking
genes involved in immune responses have been made
with C57BL6/J genetic background. The other is that we
and one other group have characterized cellular immune
responses, especially CD8+ T cell responses, to vaccinia
virus in C57BL6/J mice [23,24], when this study was
planned. Infection of C57BL/6J mouse with a high dose
(106 p.f.u. (plaque-forming units)) of the WR strain was
lethal, whereas a high dose (106 p.f.u.) of Wyeth strain
and a lower dose (104 p.f.u.) of WR strain were not lethal.
The WR strain replicated and produced higher titers of
virus in the lung and the brain compared to the Wyeth
strain. There was, however, no difference between the
virus titers in brains of mice infected with the high or low
dose of WR strain. Lethal infection with WR strain resulted
in fewer lymphocytes and an altered phenotype of T cells
in the lung compared to non-lethal infection and unin-
fected controls, and induced severe thymus atrophy with
a marked reduction of CD4 and CD8 double positive
(DP) T cells.

Results
Virulence of WR and Wyeth strains by intranasal infection
Adult female C57BL6/J mice were inoculated with various
doses of the WR and Wyeth strains intranasally. Weight
change and survival of infected mice were recorded daily.
Inoculation with higher doses (106 p.f.u. and 105 p.f.u.) of
the WR strain induced rapid and severe weight loss, which
became obvious at 3 days post-infection (Fig. 1A), and
most of mice died at 7–10 days post-infection (with 106

p.f.u. all mice died by 8 days post-infection) (Fig. 1B).
Lower doses (104 p.f.u. and 103 p.f.u.) of the WR strain
caused mild weight loss, and all mice survived. These mice
recovered their weight after 6–8 days post-infection (Fig.
1A). The 50% lethal dose (LD50) of WR strain was calcu-
lated as 4.2 × 104 p.f.u., which is similar to the LD50
reported for BALB/c mouse [22]. Wyeth strain did not kill
mice (Fig. 1B) or cause weight loss (Fig. 1A) even when
106 p.f.u. of the virus was inoculated.

Virus replication in the lung and the brain
We compared virus replication in the lung and the brain.
It had been reported that after intranasal inoculation,
virus was recovered from various organs in mice, but
higher titers of the virus were detected in the lung and the
trachea [10,22]. Since WR strain is neurotropic, we also
measured virus titers in the brain.

In the lung (Fig. 2A), lethal infection with the WR strain
(106 p.f.u.) resulted in a rapid increase of virus titer at 1
day post-infection and the virus titer continued to increase
until mice died at 7–8 days post-infection. In non-lethal
infection with the WR strain (104 p.f.u.), the virus titer in
the lung increased at 1 day post-infection, reached maxi-
mum at 3 days post-infection, started to decline 7 days
post-infection, and the virus was not detected at 18 days
post-infection. In mice infected with Wyeth strain (106

p.f.u.), the virus titer in the lung also reached the maxi-
mum at 3 days post-infection, but the titer was much
lower, and virus was cleared earlier.

The virus titers in the brain showed the same kinetics for
the lethal infection with WR strain (106 p.f.u.) and the
non-lethal infection with WR strain (104 p.f.u.) (Fig. 2B).
It reached maximum at 5 days post-infection. In the non-
lethal infection the virus titer was still high at 10 days
post-infection, and the virus was not eliminated at 18 days
post-infection, when mice were recovering their weight
(Fig. 1A). Therefore, the virus titer in the brain is unlikely
to be the sole determining factor of the lethality. In mice
infected with the Wyeth strain (106 p.f.u.), virus titer in
the brain also reached maximum at 5 days post-infection,
but the titer was much lower, and the virus was cleared at
10 days post-infection (Fig. 2B).
Page 2 of 14
(page number not for citation purposes)



Virology Journal 2007, 4:22 http://www.virologyj.com/content/4/1/22

Page 3 of 14
(page number not for citation purposes)

Virulence of WR and Wyeth VV strains in C57BL6/J mice after intranasal infectionFigure 1
Virulence of WR and Wyeth VV strains in C57BL6/J mice after intranasal infection. Groups of five mice were 
infected with 106 (■), 105 (●), 104 (▲) and 103 (▼) p.f.u. of WR strain or 106 (�) p.f.u. of Wyeth strain, or uninfected (❍). (A) 
Time course of the average body weight change of each group is presented. The average weight at day 0 is set as 1. The error 
bars indicate the standard deviations. (B) Survival curve of the infected mice in each group.
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Virus replication in cultured mouse lung cells
In vivo data showed that the WR strain reached higher tit-
ers in the lung than the Wyeth strain (Fig. 2A), indicating
that virus replication in lung cells were different between
WR and Wyeth strains. To compare the replication of WR
and Wyeth strains in lung cells, we examined virus repli-
cation in primary cultures of mouse lung cells. Primary
kidney cells were also used for comparison. When these
cells were infected at an m.o.i. (muliplicity of infection) of
0.01, both WR and Wyeth strains grew well (Fig. 3A). In

lung cells, however, the WR strain grew about 400 times
better than the Wyeth strain at 48 hours post-infection,
whereas in kidney cells the difference was about 20 times
(Fig. 3B). When mouse lung endothelial cells (MLECs)
were infected, only the WR strain grew (Fig. 3A,B). In
another set of experiments, to reduce the influence of cell-
to-cell spread eliminate the influences of cell-to-cell
spread, the cells were infected at an m.o.i. of 1, and similar
results were obtained (Fig. 3A,B). These results show that
the WR strain replicated more efficiently in lung cells and
lung endothelial cells than the Wyeth strain.

To examine cell-to-cell virus spread in more detail, we
compared the plaque formation and the morphology of
VV-infected cells. WR strain formed larger plaques and
produced many comets on Vero E6 and EA.hy926 cell
monolayers at 3 days post-infection (Fig. 4A). In contrast,
the Wyeth strain formed smaller plaques and did not pro-
duce comets (Fig. 4A). The Wyeth strain induced syncy-
tium formation in CV-1 cells, whereas the WR strain did
not (Fig. 4B). These data suggest that cell-to-cell spread is
also different between WR and Wyeth strains.

Wyeth strain did not alter the morphology of primary
mouse lung cells, whereas the WR strain induced some
cytopathic effect (CPE) (Fig. 4B). CPE was not apparent
on MLECs infected by either strain (Fig. 4B). In mouse pri-
mary kidney cells, the WR strain induced typical CPE and
the Wyeth strain formed syncytia similar to CV-1 cells
(Fig. 4B). These observations suggest that there may be
differences in the replication and dissemination in mouse
lungs in vivo at an early phase of infection.

Lymphocytes in the lung
Virus replication in the lung was suppressed at 5 days
post-infection in mice inoculated with a non-lethal dose
of WR and the Wyeth strains, while the virus titer in the
lung continued to increase in mice infected with the lethal
dose of WR until death of the mice (Fig. 2A). We analyzed
immune responses at this early phase of the infection
focusing on CD4+ and CD8+ T cells and NK cells.

At 5 days post-infection the proportion of lymphocytes in
the total lung cells markedly decreased in mice given the
lethal infectious dose of the WR strain compared to unin-
fected control mice (Fig. 5A). In contrast, non-lethal infec-
tion with WR and Wyeth strains only caused a mild
reduction of lymphocytes (Fig. 5A). There were no differ-
ences in the percentages of the CD3+ population (31–
37%) of lymphocytes among the uninfected controls and
lethally or non-lethally infected mice (Fig. 5B). We, how-
ever, noticed that there were two subsets of CD3-positive
cells that expressed CD3 at a high level (CD3high) or inter-
mediate level (CD3int) (Fig. 5B). Lethal-infection with the
WR strain increased the proportion of CD3int up to 13.6%

Virus titers in the lungs (A) and the brains (B) of the infected miceFigure 2
Virus titers in the lungs (A) and the brains (B) of the 
infected mice. Groups of three to five mice were infected 
with 106 (■) and 104 (▲) p.f.u. of WR and 106 p.f.u. (�) of 
Wyeth intranasally for each time point, and their lungs and 
brains were analyzed at various time points post-infection. 
Titers were calculated as p.f.u./mg tissue for the lung and the 
brain. The error bars indicate the standard deviations. The 
data of titers in lungs at 18 days post-infection was under 
detection level (not plotted in graph A).
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compared to 3.49% of the uninfected control group (Fig.
5B). Non-lethal infection with WR and Wyeth did not
induce a significant increase of this subset (Fig. 5B). CD4
expression in the CD3int cells was higher than in the
CD3high cells (Fig. 5C). Therefore, the majority of the
CD3int cells were CD4high CD8- cells, whereas CD3high cells

consisted of CD4int CD8- and CD4- CD8+ cells (Fig. 5C).
As the result, a proportion of CD3int CD4high CD8- lym-
phocytes markedly increased in lethal-infection with the
WR strain (23.5%) compared to uninfected controls
(4.4%) at 5 days post-infection (Fig. 5D).

The percentage of NK (NK+CD3-) lymphocytes in the lung
declined (9.17%) in lethal infection at 5 days post-infec-
tion compared to the uninfected control (14%), whereas
non-lethal infection increased the proportion of NK cells
(25.6% and 27.3%) (Fig. 6).

These results indicate that the decrease of lymphocytes
including T cells and NK cells and the alterations of the T
cell phenotypes in the lung at the early phase of infection
may be the reasons why virus replication was not sup-
pressed in the lungs of mice with the lethal infection by
the WR strain.

Atrophy of thymus in mice inoculated with the WR strain
In addition to the decreased lymphocytes in the lung,
intranasal inoculation with a lethal dose of WR strain
induced severe thymus atrophy in C57BL/6J mice (Fig.
7A). The number of thymocytes decreased dramatically by
3 days post-infection compared to uninfected mice (Fig.
7B). This reduction was associated with a loss of
CD4+CD8+ DP cells (Fig. 7D). Non-lethal infection with
WR reduced the size of the thymus to some extent (Fig.
7A). The number of thymocytes decreased to about a half
of the thymocytes in the uninfected mouse at 5 days post-
infection, reached a nadir at 10 days post-infection, and
then started to recover (Fig. 7B). The proportion of
CD4+CD8+ DP cells was not different at 5 days post-infec-
tion (73.2%), but dropped to 26% at 10 days post-infec-
tion (Fig. 5D). The degree of the decrease of CD4+CD8+

DP cells in the non-lethal infection was not as dramatic as
in the lethal infection. Infection with the Wyeth strain did
not change the size of the thymus (Fig. 7A) or the number
of thymocytes by 5 days post-infection (Fig. 7B). The
number of thymocytes started to decline after that (Fig.
7B), but the proportion of CD4+CD8+ DP cells stayed
unchanged (Fig. 7D).

Virus was recovered from the thymi of mice infected with
the lethal dose of WR at 3 and 5 days post-infection (Fig.
7C). In contrast, the virus titers in the thymi in non-lethal
infection were mostly below detection levels (Fig. 7C).

Discussion
In this study, we analyzed virus replication and host
immune responses in lethal and non-lethal VV infections
in mice. We used two VV strains; the virulent WR strain
and the less virulent Wyeth strain. Infection of C57 BL/6
mouse with a high dose (106 p.f.u.) of the WR strain was
lethal, whereas a high dose (106 p.f.u.) of the Wyeth strain

Virus replications in primary mouse lung and kidney cells and MLEC after infection with WR and Wyeth strains at an m.o.i. of 0.01 and 1Figure 3
Virus replications in primary mouse lung and kidney 
cells and MLEC after infection with WR and Wyeth 
strains at an m.o.i. of 0.01 and 1. (A) Virus titers of WR 
(■) and Wyeth (�) strains in cells were determined at 2, 24 
and 48 h post-infection. Titers are shown as p.f.u./well in log 
scale. The error bars indicate the standard deviations from 
triplicate samples. (B) Fold increase of WR titers compared 
to Wyeth titers at 2 (black bar), 24 (gray bar) and 48 (white 
bar) h post-infection.
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Morphological changes of cell cultures infected with WR and Wyeth strains at 3 days post-infectionFigure 4
Morphological changes of cell cultures infected with WR and Wyeth strains at 3 days post-infection. (A) Plaque 
formation in Vero E6 and EA.hy926 cells. (B) Morphological changes of CV-1, primary mouse lung cells (Lung), MLEC and pri-
mary mouse kidney cells (Kidney) at 200 × magnification. Cells were infected with WR or Wyeth strains at m.o.i. 1 and 
observed after 2 days post-infection.
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or a low dose (104 p.f.u.) of the WR strain were not lethal.
Replication of virus in the lung, but not in the brain, cor-
related with lethality. The WR strain is known to cause
encephalitis after intracranial inoculation [22,25]. We,
however, did not observe neurological symptoms in any
of the infected mice, and think it unlikely that encephali-
tis caused death of the mice infected with a high dose of
the WR strain by the respiratory route.

The lethal infection with WR strain was associated with a
decrease of the number of T cells and NK cells in the lung
and with an altered phenotype of T cells compared to
uninfected controls and non-lethal infections. We used

isoflurane to anesthetize mice before intranasal inocula-
tion for consistent administration of the inoculum into
the airway. Isoflurane is known to inhibit interferon stim-
ulation of NK cells in mice [26,27]. It was also reported
that mean white blood cell counts in circulation decreased
in mice after exposure to isoflurane anesthesia [28]. In our
experiments uninfected control mice were also anesthe-
tized with isoflurane before inoculation of CV-1 cell
lysate. Therefore, we interpret the observed decrease of the
number of T cells and NK cells in the lung of lethally
infected mice (when compared to uninfected controls and
non-lethal infections) is due to viral infection, although

Characterization of T lymphocytes in the lung at 5 days post-infectionFigure 5
Characterization of T lymphocytes in the lung at 5 days post-infection. Mice were intranasally infected with 106 p.f.u. 
or 104 p.f.u. of WR or 106 p.f.u. of Wyeth strain. Cells were isolated from lungs and stained for T cell specific markers CD3, 
CD4 and CD8. (A) The percentage of lymphocytes in total lung cells isolated from uninfected control and infected mice. (B) 
Histograms of CD3 expression in lymphocytes from the lung. The percentages of CD3 intermediate (int) and CD3 high (high) 
subsets are shown in each histogram. (C) CD4 and CD8 expressions in CD3int and CD3high subsets. Data are representative 
of the lymphocyte subsets obtained from uninfected mice lungs. (D) CD4 and CD8 expressions in CD3 positive cells (CD3int 
and CD3high) from uninfected control and infected mice lungs. The percentages of CD4 high and CD4 intermediate are shown 
in each diagram.
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Characterization of infiltrating NK cells in the lung at 5 days post-infectionFigure 6
Characterization of infiltrating NK cells in the lung at 5 days post-infection. Mice were intranasally infected with 106 

p.f.u. or 104 p.f.u. of WR or 106 p.f.u. of Wyeth. Cells isolated from lungs were stained with mAbs for NK1.1 and CD3.
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Thymus atrophy in mice infected with WR and Wyeth strainsFigure 7
Thymus atrophy in mice infected with WR and Wyeth strains. (A) Pictures of the thymus in mice infected intranasally 
with 106 p.f.u. or 104 p.f.u. of WR or 106 p.f.u. of Wyeth at 5 days post-infection. Arrows indicate the thymi. (B) The numbers 
of thymocytes from mice infected with WR and Wyeth strains at 3 (white bar), 5 (light gray bar), 10 (dark gray bar) and 18 
(black bar) days post-infection. Thymocyets were pooled from groups of three mice and counted. Data are shown as the aver-
age numbers of thymocytes per mouse. The dotted line is the average number of thymocytes from uninfected mice. ND; not 
determined. (C) Virus titers in thymus of mice infected with WR and Wyeth strains at 3 (white bar), 5 (light gray bar), and 10 
(dark gray bar) days post-infection. Titers are shown as p.f.u. per organ in log scale. The error bars indicate the standard devi-
ations in triplicate samples. The dotted line indicates the detection limit. ND; not determined. (D) CD4 and CD8 expressions 
of thymocyets from mice infected with WR and Wyeth strains at 5 (upper five panels) and 10 (lower two panels) days post-
infection.
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synergistic effect of viral infection and isoflurane cannot
be ruled out.

The lethal infection with WR strain also induced severe
thymus atrophy resulting in the reduction of CD4+CD8+

DP T cells in the thymus. These data suggest that lethal
infection with the WR strain by the respiratory route
induces immune suppression, resulting in uncontrolled
virus replication in the lung. Innate immune responses are
likely to be very important to limit virus replication in the
lung in the early phase of the infection (1–3 days post-
infection) for subsequent recovery from VV infection. In
the absence of effective early immune responses, the mice
infected with a high dose of WR do not develop effective
adaptive immune responses and the high viral burden
suppresses the T cell responses in the lungs and causes
severe thymic atrophy.

Intranasal infection with VV resulted in peak virus titers in
the lung at 3–7 days post-infection (Fig. 2). This replica-
tion pattern is similar to infection with paramyxoviruses
such as respiratory syncytial virus (RSV) and pneumonia
virus of mice (PVM), in which virus titers in the lung peak
at 4–5 days post-infection [29-31]. In contrast, other res-
piratory viruses, such as influenza and SARS viruses, rap-
idly replicate in the lung after intranasal infection and the
virus titers reached a peak at 1–2 days post-infection [32-
34]. Although RSV has direct cytopathic effects on the res-
piratory epithelium, host immune responses are more
important factors in disease pathogenesis [35]. In lethal
intranasal infection with VV, in contrast, there is a marked
decrease in lymphocytes in the lung. T cells are key effec-
tors of virus clearance in mice infected with various
viruses via respiratory route [36]. Immune suppression of
T cells is considered to be an immune evasion strategy,
observed in several respiratory virus infections. For exam-
ple, PVM and RSV suppressed T cell effecter functions in
the lung [37,38]. Adenovirus infection induced T cells
with decreased proliferative ability in the lung and local
immunoincompetence by altering DC-T-cell interaction
[39]. Infection with highly virulent influenza A strains
down-regulated CD8+ T cell responses [33]. Since VV has
many immunomodulatory proteins [40-42], it is not sur-
prising that high levels of WR VV induced immune sup-
pression in the infected lungs.

We observed that intranasal VV infection induced severe
thymus atrophy (Fig. 7). Severe atrophy of the thymus is
seen in several infections [43] including acute viral infec-
tions, such as rabies [44,45], measles [46,47], mouse hep-
atitis [48], and Ebola viruses [49]. Although inoculation
of ectromelia virus into the food-pad of BALB/c mouse is
known to cause the necrosis of thymus as well as other
lymphatic tissues [50], there has been no description of
thymus atrophy in mice induced by respiratory infection

with VV. It is not known whether RSV, PVM, adenovirus
and influenza A virus cause thymus atrophy when
immune suppression of T cells is observed in the lung. The
atrophy of the thymus was mainly due to a reduction of
immature CD4+CD8+ DP. One major consideration
regarding thymus atrophy is a rise of glucocorticoid hor-
mone level in the blood, which is induced due to the
stress responses to severe infections [43,44,51,52].
CD4+CD8+ DP thymocytes are particularly sensitive to
glucocorticoids. In addition, some cytokines, such as
tumor necrosis factor-α, may also contribute to the thy-
mus atrophy in some infections [48,53]. It also has been
suggested that infection of the cells in thymus is involved
in reducing the number of thymocytes [43,46-48,54,55].
In measles and mouse hepatitis virus infections apoptotic
depletion of thymocytes is mediated by the infection of
thymic epithelial cells [46-48]. In Trypanosoma cruzi
infection parasite-derived factors are involved in apopto-
sis of thymocytes [43,54,55]. VV has been found to syn-
thesize steroid hormones with a 3β-hydroxysteroid
dehydrogenase encoded by gene A44L [56]. We did not
perform experiments dissecting the mechanisms of the
thymus atrophy induced by intranasal VV infection in the
lethal infection. However, virus was recovered from the
thymus when the thymocyte number was markedly
decreasing at days 3 and 5 post-infection in the lethal
infection (Fig. 7B and 7C), suggesting that the steroid hor-
mone synthesized by both virus and host may contribute
to thymus atrophy as well as the direct effect of virus infec-
tion against thymic cells. The VV A44L gene is well con-
served among VV strains. In contrast, virus was under the
detection limit in the thymi of mice infected with a non-
lethal dose of WR when the thymocyte number was at
nadir at day 10 post-infection (Fig. 7B and 7C). Further
investigation is required to uncover the mechanisms of
thymus atrophy induced by respiratory infection with VV.
At this point it appears that acute thymus atrophy early in
infection may be a component of the lethal outcome.

WR and Wyeth strains differed in the ability to grow in pri-
mary cultures of lung and lung endothelial cells, which
reflected the in vivo growth of these viruses in the lung.
The size of the virus plaques and the ability to form com-
ets were also different between these two strains (Fig. 4A).
In addition, the Wyeth strain induced syncytium forma-
tion in infected cells, but the WR strain did not (Fig. 4B).
Usually cell-cell fusion is not apparent during VV infec-
tion in cultured cells, but it appears spontaneously with
certain mutants or can be triggered by briefly lowering the
pH [57]. These differences suggest different host-virus
interactions in infected lung cells, and in the case of WR
infection, a high dose of virus resulted in uncontrolled
replication of the virus in the lung. It has been reported
that the hemagglutin and serine protease inhibitor 3 are
fusion inhibitor proteins and mutants containing a dis-
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ruption of these proteins form syncytia at neutral pH [58-
62]. We did not analyze nucleotide differences between
WR and Wyeth strains, since the Wyeth strain is not
cloned and is genetically heterogeneous, which recent
sequencing data of Dryvax (derived from the same New
York City Board of Health strain) confirmed (GenBank
accession numbers DQ377945, AY313847, AY313848).

Conclusion
This study suggests that the lethality induced by intranasal
infection with a high dose of the WR strain of VV is caused
by increased replication of the virus in lung cells and lym-
phocyte depletion in the lungs and the thymus during the
early phase of the infection, resulting in uncontrolled
virus replication in the lung. Murine models of respiratory
infection with several viruses have been provided useful
information about acute and chronic virus respiratory
infection, humoral and cellular immune responses, CD4
and CD8 T cell biology, and innate immune responses.
We think that VV respiratory infection of the mouse is a
useful model not only to understand the pathogeneses of
poxviruses but also other respiratory viruses.

Methods
Viruses and cells
Vaccinia virus WR strain was kindly provided by Girish J.
Kotwal, Division of Medical Virology, University of Cape
Town, Cape Town, South Africa, and William L. Marshall
of Department of Medicine, University of Massachusetts
Medical School, and the Wyeth strain was kindly provided
by Margo A. Brinton of the Department of Biology, Geor-
gia State University, Atlanta, GA, through Ching-Juh Lai of
Laboratory of Infectious Diseases, National Institute of
Allergy and Infectious Diseases, National Institutes of
Health. Viruses were grown in CV-1 cells (ATCC CCL-70)
and virus stocks were prepared from cell lysates. CV-1 cells
were maintained in Minimum Essential medium (MEM)
(Invitrogen, Carlsbad, CA) containing 10% fetal bovine
serum (FBS). A human endothelial cell line, EA.hy926,
was kindly provided by Cora-Jean S. Edgell, University of
North Carolina. EA.hy926 cells and Vero E6 cells (ATCC
CRL-1586) were maintained in Dulbecco's modified
Eagle's medium (DMEM) (Invitrogen) containing 10%
FBS. Virus titers were determined by plaque forming assay
using CV-1 cells following the standard procedure [63].

Isolation of mouse primary lung and kidney cells
Primary mouse lung and kidney cells were isolated from
female C57BL/6J mice. Lungs and kidneys were removed
and diced with scissors. Then, each organ was digested
with 1 mg/ml collagenase A (Roche Diagnostics, Indiana-
polis, IN) for 45 min, filtered with a 70 μm cell strainer
(BD Biosciences, Bedford, MA), and the separated cells
were grown in DMEM supplemented with 10% FBS.

MLECs were isolated and grown as previously reported
[64,65]. Briefly, mouse lung cells were incubated with
Dynabeads® M-450 Sheep anti-Rat IgG (Dynal Biotech
ASA, Oslo, Norway) coated with MEC13.3 (anti-mouse
CD31 rat IgG)(BD PharMingen, San Diego, CA). CD31-
expressing cells were separated by Dynal MPC-L Magnetic
Particle Concentrator (Dynal Biotech ASA, Oslo, Norway)
and grown in a gelatin-coated tissue culture flask. One
week later, adherent cells were trypsinyzed, and CD102-
expressing cells were isolated by 3C4 (anti-mouse CD102
rat IgG)(BD PharMingen)-coated beads and grown in
DMEM with 20% FBS supplemented with 100 μg/ml
heparin sodium salt from porcine intestinal mucosa
(Sigma-Aldrich, St. Louis, MO) and 100 μg/ml endothe-
lial cell growth supplement (BD Biosciences). Cells were
confirmed to express the endothelial specific markers,
PECAM (CD31), ICAM-2 (CD102) and VE-cadherin
(CD144) by flow cytometric analysis.

Virus inoculation
4–6 week-old female C57BL/6J mice were purchased from
The Jackson Laboratory. Mice were anesthetized with iso-
flurane and then intranasaly inoculated with various
doses (103 to 106 p.f.u.) of the WR or Wyeth strains, or
uninfected CV-1 cell lysate (for control mice) in a total
volume of 50 μl. Mice were observed for disease symp-
toms and weighed daily. All mice were maintained in the
Animal Facility at the University of Massachusetts Medical
School, which is regulated by AWA-1995, PHS-1986,
MA140-1985 and follows the AAALAC-1965 guidelines.

Virus titration in organs
Lungs, brains and thymi were taken from mice inoculated
with VV at different days post-infection and kept frozen at
-80°C until use. Each organ was ground on a 40 μm cell
strainer (BD Biosciences) in ten volumes of phosphate-
buffered saline (PBS) with 10% FBS and sonicated for 30
seconds six times. Virus titers were determined by plaque
forming assays and titers were calculated as p.f.u./mg tis-
sue for the lung and the brain, and p.f.u./total tissue for
the thymus.

Virus growth curve in cell culture
CV-1, Vero E6, primary mouse lung and kidney cells, and
MLECs were grown in 6-well plates until cells became
confluent. The monolayers were inoculated with VV for 2
hours at indicated multiplicity of infection (m.o.i.). Cells
were harvested at different time points after infection and
kept at -80°C until use. Cells were resuspended in 100 μl
of PBS with 10% FBS and sonicated. Virus titers were
determined by plaque forming assay using CV-1 cells and
titers were calculated as p.f.u./well.
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Recovery of leukocytes from lungs, thymi and spleens
Lung leukocytes were isolated from VV-infected mice and
uninfected control mice at indicated time points. Lungs
were inflated with RPMI medium (Invitrogen) through
the trachea and washed with PBS. A pool of lungs from
four mice was minced and digested with collagenase A
(Roche Diagnostics), and then lung cells were strained
with a 70 μm cell strainer (BD Biosciences). Live cells were
separated from dead cells or debris of lung tissue by cen-
trifugation with Ficoll-Paque (GE Healthcare Bio-sciences
AB, Uppsala, Sweden). Thymocytes were also recovered
from VV-infected mice and uninfected control mice at
indicated time points. A pool of thymocytes or spleno-
cytes from four mice was lysed with RBC lysis buffer
(Sigma-Aldrich), and resuspended in RPMI medium.

Flow cytometric analysis of cell-surface antigens
Lung leukocytes and thymocytes were washed and were
blocked with Purified Rat Anti-Mouse CD16/CD32
(FCγIII/II Receptor) Monoclonal Antibody (Mouse BD Fc
Block)(BD PharMingen) in FACS buffer (PBS containing
0.1% BSA and 0.1% sodium azide). Cells were stained
with a mixture of different fluorescent-labeled antibodies
directed at surface phenotypic markers, CD45, CD3, CD4,
CD8a, NK1.1 and CD25 (eBioscience, San Diego, CA),
and then fixed with 2% paraformaldehyde. The stained
cells were analyzed by FACSAria (BD Biosciences). Leuko-
cytes were recognized by characteristic size (forward scat-
ter, FSC), granularity (side scatter, SSC) and CD45
expression.
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