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Abstract
High-risk Human Papillomavirus (HPV) is the etiological agent associated with the majority of
anogenital cancers. The primary HPV oncogenes, E6 and E7, undergo a complex splicing program
resulting in protein products whose purpose is not fully understood. Previous mouse studies have
confirmed the existence of a translated product corresponding to the E6*I splice product. In terms
of function, the translated E6*I protein has been shown to bind to E6 protein and to E6 associated
protein (E6AP). E6*I has an inhibitory effect on E6-mediated p53 degradation in E6 expressing cells.
In order to analyze the relationship between E6*I and full-length E6 in relation to localization, we
created a series of green fluorescent protein (GFP) fusion products. The localization of these
proteins with reference to E6AP in vivo remains unclear. Therefore, we investigated the cellular
distribution of different forms of E6 with reference to E6AP. E6 and E6*I proteins, expressed from
a wild type E6 gene cassette, were dispersed in the nucleus and the cytoplasm. Whereas, the E6
splice donor mutant (E6MT) was primarily localized to the nucleus. E6*I protein and E6AP were
found to co-localize mainly to the cytoplasm, whereas the co-localization of full-length E6 protein
and E6AP, if at all, was found mainly at the perinuclear region. These results suggest a functional
relationship between the E6*I and full-length E6 protein which correlates with their localization and
likely is important in regulation of the E6-E6AP complex.

Findings
Human papillomavirus (HPV) is a ubiquitous sexually
transmitted DNA virus. A subset of mucosal HPVs are
termed "high-risk" (for example, types 16, 18 and 31)
because of an increased association with cervical cancer
(review[1]). Among this group, HPV16 is the most com-
mon type, being found in about fifty percent of invasive
cancers worldwide [2]. Two HPV16 oncoproteins, E6 and
E7, are actively expressed in cervical cancer cells and are

responsible for host cell transformation and cancer pro-
gression [3,4]. As a polycistronic gene, the transcription of
the E6E7 cassette yields E6E7 full-length mRNA as well as
two spliced products, E6*IE7 and E6*IIE7. These splicing
events are only found in the high-risk HPVs, but not in the
low risk group [5]. From previous studies, the E6*I tran-
script has been found to be the most abundant one
detected in HPV16 transformed cells, transgenic animals,
cervical cancer cell lines and clinical samples [3,5,6].
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While E7 is predicted to translate from spliced products as
well as full-length transcripts, E6 protein can only be
encoded from full-length transcripts [5,7]. The splicing
has been proposed to promote E7 translation by provid-
ing space for ribosome initiation to occur [5,8]. However,
it has been revealed that the translation of E7 from the
full-length transcript is as efficient as those from spliced
transcripts and that splicing is not required for E7 synthe-
sis [9].

In earlier studies, difficulty in detection of the truncated
E6 proteins raised the possibility that truncated forms of
E6 might be present in such diminishingly small quanti-
ties that they may not have significant function [10].
However, detection of E6*I and E6*II proteins in HPV18-
containing cervical cancer cells established in nude mice
[7] and HPV16 transfected cells [11] strengthens the argu-
ment that these products have a role in tumorigenesis and
in the viral lifecycle. Furthermore, studies of in vitro syn-
thesis of E6*I protein from wheat germ extract, but not
rabbit reticulocyte lysate, suggest rapid protein turnover in
the absence of E6AP [9,12]. To date, various properties of
E6*I protein have been studied. For example, HPV16 E6*I
protein has the ability to transactivate the adenovirus E2
promoter as well as HPV P97 promoter [13]. The ability of
HPV18 E6*I protein to bind to full-length E6 and E6AP
(an E3 ubiquitin ligase) has been previously reported
[14,15]. The interaction of E6 protein with E6AP was
found to be important in E6 functions (review in [16]).
However, the information regarding E6 and E6*I protein
localization with respect to E6AP protein in the cells is still
unclear. Thus, we were interested in analyzing the co-
localization of E6 and E6*I protein with E6AP to gain fur-
ther insight into functional relationships that might corre-
late with localization.

To overcome the difficulty in E6 protein detection by use
of antibodies, GFP-linked E6 constructs were created (Fig-
ure 1). HPV16 E6 (nucleotide 101 to 559) and E6*I
(nucleotide 101 to 417, without nucleotide 226–409)
were amplified from SiHa cDNA and cloned in frame to
the C-terminus of pEGFP-C1 (Clontech) using XhoI and
KpnI sites. From previous studies [14,17], similar GFP-E6
constructs have been shown to generate both full-length
E6 as well as E6*I proteins. The E6 splice donor mutant
(E6MT) was generated by site-directed mutagenesis at the
spliced donor site with a G to C mutation at nucleotide
226 resulting in a V to L amino acid substitution. Plasmids
were transfected into human embryonic kidney cells,
293T, and immortalized human keratinocyte cells,
HaCaT, using FuGene 6 transfection reagent (Roche)
using methods prescribed by the manufacturer. At 48
hours after transfection, cells were fixed with 4% parafor-
maldehyde in PBS, permeabolized with 0.1–0.5% NP-40,
blocked with 5% fetal bovine serum in PBS and incubated

with monoclonal antibody against E6AP (Sigma). After
three washes, cells were incubated with Alexa 568-conju-
gated to goat anti-mouse antibody (Molecular Probes).
Cells were washed with PBS and mounted on the slides
using Gel Mount (Sigma). To localize the nuclei, cells
were incubated with 4',6-Diamidino-2-phenylindole
(DAPI; Roche) diluted in PBS before a final PBS washing
step. Slides were observed using an Olympus FV500 Con-
focal microscope with 3 lasers giving excitation lines at
405 nm, 488 nm and 515 nm. The images were taken
under 60 × or 100 × objective oil immersion lens and col-
lected at 1,024 × 1,024 pixels or 512 × 512 pixels resolu-
tion. The images were captured at various scanning
conditions suited for the individual samples in order to
eliminate overlapping signals between channels.

We observed the localization of the different forms of E6
protein in 293T cells and HaCaT cells. The results are
shown in figure 2. The wildtype E6 construct, which yields
both full-length E6 and E6*I proteins (the truncated form
of E6 that contains 43 amino acids identical to the N-ter-
minus of E6), was expressed throughout the cells, but
preferentially in the nucleus. A similar result was obtained
with E6*I transfected cells. Interestingly, when E6MT was
expressed, the signal was predominantly detected in the
nucleus. All three protein products were excluded the
nucleoli. Similar results were obtained from both 293T
and HaCaT cells. These results correspond to previous
reports of HPV18 E6 localization [17,18]. However, the
localizations of E6 and E6*I proteins are different than
one previous study of HPV16 E6 [19] which found that
HPV16 E6 and E6*I proteins were primarily nuclear. Since
HPV16 E6 used in our study was amplified from SiHa
cells, which contains two mutations (position 83, L to V
and position 103, Q to D), it is possible that these contrib-
ute to the observed differences. These conservative amino
acid changes are not predicted to alter localization since
neither are in regions responsible for nuclear import [19].
However, alteration of interactions with unknown cellu-
lar targets by these mutations cannot be ruled out. In our
experiments, the level of E6*I and/or E6 proteins differed
slightly from the other studies. Though the signals shown
in our experiments from E6 and E6*I proteins were dis-
persed throughout the cells, these signals were consist-
ently excluded from nucleoli. Hence, these signals are not
likely to be artifactual.

As the E6 protein has been shown to associate with E6AP
in HPV-induced cervical cancers, the location of these
functional complexes is of importance. From results in fig-
ure 3, co-localization of either E6 or E6*I protein and
E6AP mainly occured in the cytoplasm whereas co-locali-
zation of E6MT and E6AP was restricted to areas of the
nucleus and the perinuclear region. In essence, E6MT pro-
tein was rarely co-localized with E6AP. The localization of
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E6AP agreed with the previous studies showing that E6AP
is predominately localized to the cytoplasm, and to a
lesser extent, the nucleus[20,21]. E6 protein expression
has been shown to induce self-ubiquitination and degra-
dation of E6AP with a dramatic reduction in E6AP half-
life overall [22]. This likely explains the infrequent detec-
tion of E6MT and E6AP co-localization in the cytoplasm.
The binding of E6AP with full-length E6 protein leads to
the rapid degradation of E6AP. The detection of E6*I pro-
tein co-localized with E6AP is in agreement with previous
observations which showed interaction between HPV18
E6*I protein and E6AP in vitro [14,15] and that we would
expect such complexes to be stable since E6*I inhibits
E6AP function thereby allowing the complexes to be visi-
ble by immunofluoresence. The co-localization of E6 pro-
tein with E6AP resembles that of E6*I. The presence of
translation products of E6*I protein in E6-transfected
cells, may explain this similarity. There are two mechanis-
tic possibilities; first, the E6*I protein may compete with
E6 protein in binding to E6AP and this binding may pro-
tect E6AP from degradation induced by E6 protein. Sec-
ond, the E6*I protein might bind to E6 full-length protein
and the binding might modulate the function of E6 in
induction of E6AP degradation. As shown in the micros-
copy results, the co-localization of E6AP is not exclusively
to E6 protein. This raises the possibility that E6AP-inde-
pendent functions of E6 [23], E6AP-independent degrada-

tion of E6 [24] or, in fact, E6-independent functions of
E6AP may play a significant role.

In addition, we observed stronger fluorescent signals with
E6-transfected cells than from E6*I or E6MT-transfected
cells (data not shown). More intense signals might suggest
interaction with and stabilization by cellular proteins.
This could involve the ability of E6 protein to oligomerize
with E6 or E6*I protein [14]. In other studies, binding of
E6*I and E6 protein has been shown to induce the degra-
dation of both proteins [14], however, the increase in sig-
nal observed with E6 suggests that homo-oligomeric
interactions could stabilize the protein complexes. The
differing capacity of E6*I protein of different HPV types to
interfere with E6 might result in differing downstream
effects on E6-dependent targets. Since the similarity of
E6*I protein between HPV16 and HPV18 is about 50%
and the amino acids 28–31, which have been shown to be
important in E6 and E6AP binding, differ slightly (amino
acid "IEIT" from HPV18 versus "IILE" from HPV16), this
may account for the differing capacity to bind E6 or E6AP.
Furthermore, HPV16 E6 and HPV18 E6 have been shown
to have different preferences in binding to p53 structural
conformations [20]. Therefore, it might be informative to
test E6*I protein from various HPV types for functional
differences in their abilities to affect stability of cellular
targets such as p53.

E6 protein sequencesFigure 1
E6 protein sequences. The secondary structure of E6 protein is shown. The E6 gene codes for full-length E6 as well as a 
truncated protein (E6*I, indicated in pink). The E6 splice donor mutant (E6MT) was generated by site-directed mutagenesis at 
the splice donor site resulting in a V to L substitution at amino acid 42 (arrow head). This construct expresses only E6 full-
length protein. Whereas, the E6*I construct expresses only the truncated form of E6 and not the full-length form. GFP was 
fused to the N-terminus of each of these constructs.
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Cellular localization of HPV16 E6s in 293T (A) and HaCaT (B)Figure 2
Cellular localization of HPV16 E6s in 293T (A) and 
HaCaT (B). Cells were transiently transfected with plas-
mids expressing GFP, GFP-E6, GFP-E6*I and GFP-E6MT. 
Cells were grown and fixed with 4% paraformaldehyde in 
PBS on the coverslips at 48 h after transfection. The fluores-
cent images, phase contrast images and merge fluorescent-
phase contrast images are shown. V indicates the pEGFP-C1 
vector transfected cells. The scale bar represents 20 µm.
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Co-localization of E6s and E6AP in 293T (A) and HaCaT (B)Figure 3
Co-localization of E6s and E6AP in 293T (A) and 
HaCaT (B). Transiently transfected cells were analyzed for 
E6 or E6 variants fused to GFP, E6AP (Alexa 568 dye) and 
nuclear DNA (DAPI) by confocal microscopy. Slides were 
analyzed by microscopy with 3 lasers excitation lines. The 
images from the individual channels (DAPI, GFP, Alexa 568) 
as well as the merged image are shown. P and V represent 
non-transfected cells and pEGFP-C1 vector transfected cells, 
respectively. The scale bar represents 20 µm.
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In conclusion, our results suggest a functional role for
expression of E6*I protein in high-risk HPV-infected can-
cer cells. We propose a model as shown in figure 4. E6*I
protein may bind to either E6 or E6AP and binding may
modulate their functions or interfere directly with degra-
dation of these two proteins. Further studies in the regula-
tion of E6 protein with E6*I protein provide useful
insights into HPV-disease and a potential means to con-
trol development and progression of HPV-related cancers.
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